
The Visual Computer manuscript No.
(will be inserted by the editor)

Kei Iwasaki · Yoshinori Dobashi · Fujiichi Yoshimoto · Tomoyuki Nishita

GPU-based rendering of point-sampled water surfaces

Abstract Particle-based simulations are widely used to
simulate fluids. We present a real-time rendering method
for the results of particle-based simulations of water. Tra-
ditional approaches to visualize the results of particle-
based simulations construct water surfaces that are usu-
ally represented by polygons. To construct the water
surfaces from the results of particle-based simulations,
a density function is assigned to each particle and a den-
sity field is computed by accumulating the values of the
density functions of all particles. However, the compu-
tation of the density field is time-consuming. To address
this problem, we propose an efficient calculation of den-
sity field using a graphics processing unit (GPU). We
presents a rendering method for water surfaces sampled
by points. The use of the GPU permits efficient simula-
tion of optical effects such as refraction, reflection, and
caustics.

Keywords Real-time rendering · GPU · point-sampled
geometry · caustics

1 Introduction

The research into fluid simulation is one of the most
important research topics in computer graphics. Many

K. Iwasaki
Department of Computer and Communication Sciences,
Wakayama University
E-mail: iwasaki@sys.wakayama-u.ac.jp

Y. Dobashi
Graduate School of Information Science and Technology,
Hokkaido University
E-mail: doba@nis-ei.eng.hokudai.ac.jp

F. Yoshimoto
Department of Computer and Commnucation Sciences,
Wakayama University
E-mail: fuji@sys.wakayama-u.ac.jp

T. Nishita
Graduate School of Frontier Sciences,
The University of Tokyo
E-mail: nis@is.s.u-tokyo.ac.jp

methods have been developed for the simulation of flu-
ids such as water, smoke, and fire [18,5,4,19]. Most of
these methods subdivide the simulation space into grids
and solve the Navier-Stokes equations by discretizing the
equations, using the grids to simulate the fluid dynam-
ics. These methods are based on the Eulerian method.
On the other hand, particle-based fluid simulations have
been developed that represent the fluid as particles and
calculate the fluid dynamics by solving the particles dy-
namics [8,20]. Particle-based fluid simulation has received
attention since this simulation method is free from the
numerical diffusions in the convection terms, suffered by
the Eulerian method, and the surface transformation is
easy to handle.

One of the methods of visualizing particle-based sim-
ulation is to construct the water surface by polygons
and to render these polygons. The water surface is con-
structed as follows. Initially, a density function, (or smooth-
ing kernel), is defined with the distance from the center
of the particle as parameter. The simulation space is sub-
divided into a grid and the summation of the densities
of the particles is calculated at each grid point. Then
the water surface is extracted as an iso-surface by using
either the marching cube [10] or the level set method [4,
15]. To render high quality images of the water surfaces,
the simulation space must be subdivided into numerous
small cells. This indicates that the computational cost
of the density calculation at each cell also increases and
thus the cost of the construction of the water surface
becomes quite high. Moreover, many small polygons are
generated from a fully subdivided grid. For the anima-
tion of the particle-based fluid simulation, the process-
ing of enormous numbers of small polygons compared
to the number of screen pixels in each frame results in
bandwidth bottlenecks. Therefore, these problems pre-
vent the particle-based fluid simulation from being ap-
plied to interactive applications such as the preview of
the simulation, video games and virtual reality.

In recent years, point based rendering methods have
been developed, using the points as primitives instead of
the polygons [14,22]. Several methods that are acceler-

2 Kei Iwasaki et al.

ated by the GPU have been presented [2,6]. Moreover, a
point based method has been developed for visualizing
iso-surfaces [3]. This method demonstrates that the point
based visualization method for iso-surfaces can obtain
storage and rendering efficiency compared with standard
polygon-based methods.

Particle-based fluid simulation represents the fluid as
particles and calculates the dynamics. Therefore, visual-
izing the particle-based fluid simulation by using point
primitives is straightforward, since both of the result
data of the simulation and the data from the rendering
are unified into points.

This paper presents a fast rendering method, result-
ing in the particle-based fluid simulation without explic-
itly constructing polygons. In this paper, we deal with
the water as a fluid and describe a rendering method for
the water, represented by point primitives. To render the
water surface, we have to take into account optical effects
due to water surfaces such as reflection, refraction, and
caustics. Rendering these optical effects is essential to
increase realism. We present a fast rendering method for
these effects from water surfaces, represented by points.

The contributions of our method are as follows.

– Fast generation of point primitives, representing wa-
ter surfaces by using the GPU

– Fast rendering of the water surface, represented by
points to obtain optical effects such as refraction, re-
flection, and caustics

The rest of our paper is organized as follows. Section 2
describes the related work. In Section 3, the overview of
our method is presented. Section 4 describes the calcula-
tion of the density at each grid point by using the GPU.
The method of rendering water surfaces, represented by
points, is described in Section 5. The rendering results
of point based fluid simulation are shown in Section 6.
Finally, conclusions and future work are summarized in
Section 7.

2 Related Work

There have been many methods for visualizing the re-
sults of the fluid simulation. These are categorized into
two types. One is to polygonize the iso-surfaces, repre-
sented by implicit functions, and then to render the poly-
gons. Another is to directly render the implicit surface,
without creating polygons. One of the methods to create
the implicit surface using polygons is the marching cube
method [10]. Many methods have employed this march-
ing cube approach to render the water surface [9,12,19].
Moreover, a GPU accelerated iso-surface polygonization
method has been proposed in recent years. Matsumura
et al. proposed a fast method of iso-surface polygoniza-
tion using programmable graphics hardware [11]. Reck et
al. developed a hardware accelerated method to extract

iso-surfaces from unstructured tetrahedral grids [16]. Al-
though the marching cube method is efficient, represent-
ing iso-surfaces by creating polygons requires the mem-
ory for the connectivity information and two different
data structures are required for points and polygons.

Another visualization method for fluid simulation of
water involves the rendering of the iso-surface directly.
Enright et al. [4] and Premoze et al. [15] employed a
level set method to represent the water surface. Their
methods render the water surface by using Monte Carlo
path tracing methods. Whilst these methods can render
realistic images, the computational cost for the rendering
is high.

Although not for the rendering of the results of the
fluid simulation, a visualization method has been devel-
oped for iso-surfaces using point primitives. Co et al.
proposed a new algorithm called iso-splatting for render-
ing iso-surfaces using point primitives [3]. This method
shows that the point based rendering of iso-surfaces can
exceed the traditional polygon based approach such as
a marching cube method in time and space efficiency.
This method, however, does not describe the calculation
method of the scalar(density) field, whose computational
cost is high.

To solve these issues, we present a novel approach to
render the water surface in a particle-based fluid simu-
lation. In our method, the iso-surface, representing the
water surface, is calculated efficiently by using fluid par-
ticles. Then the water surface is sampled, point by point,
and rendered by surfels [14]. This makes it possible to
unify the data structure into points in the simulation
and then rendering, without the construction of poly-
gons. Moreover, our method presents a fast rendering
method for reflection, refraction, and caustics by use of
the point-sampled water surface.

3 Overview

Fig. 1 shows the overview of our method. This method
deals with the results of the particle-based fluid simula-
tion (Fig. 1(a)), calculated by particle-based simulation
methods such as Moving Particle Semi-Implicit(MPS)
and Smoothed Particle Hydrodynamics(SPH). Then the
water surfaces, including caustics, are rendered as shown
in Fig. 1(d). To render the water surfaces including caus-
tics, particles that represent the surfaces must be ex-
tracted. Directly rendering the particles representing sur-
faces is one solution to visualize the result of the particle-
based fluid simulation. However, the number of particles
used in the simulation is usually between about 1, 000
and 100, 000 so that the number of particles represent-
ing a surface is, at most, several ten thousands. As Muller
pointed out, this is not sufficient number to render high
quality images [12]. On the other hand, point based ren-
dering methods [14,22,2,6] are designed to render huge
number of points measured by range scanners. Thus, it

GPU-based rendering of point-sampled water surfaces 3

(a) result of particle
 based simulation

(b) calculate density
 field

(c) extract iso-surface
 and sample by point

(d) render water surface
 and caustics

Fig. 1 Overview of our method. (a) Our method renders water surfaces from the results of the particle-based simulation. (b)
We first assign the density function to each particle and calculate the density field. (c) Then the iso-surfaces that represent
the water surfaces are extracted and sampled by points. (d) Our method renders water surfaces represented by points and
renders caustics taking into account refractions.

is difficult to create high quality images of water surfaces
by rendering only the particles used in the simulation.

Therefore, our method generates dense sampled sur-
fels (Fig. 1(c)), representing water surfaces from all the
particles used in the simulation (Fig. 1(a)). We create a
temporary grid in the simulation space, where the den-
sities of the particles are accumulated in each grid point
(Fig. 1(b)). The density at each grid point is calculated
as a density function.

The cost of the density computation at each grid
point is quite high, since it depends on the number of
grid points and the number of particles. We present a
fast method for accumulating densities of particles by
using the GPU. Our density calculation method can be
applied not only to the particle-based simulation, but
also to the grid based simulation, since the marching
cube method requires the density at each grid.

The points (surfels) on the iso-surface representing
the water surface are then extracted. The calculation of
surfels on the water surface is explained in Section 4.

The water surfaces are rendered by splatting surfels
(Fig. 1(d)). Refraction and reflection of light is calculated
per pixel. The rendering method of caustics from water
surfaces represented by surfels is described in Section 5.

4 Fast Density Calculation using the GPU

This section describes the calculation method of the den-
sity field from particles used in the fluid simulations. We
create a grid in the simulation space and calculate the
density at each grid point by using particles. The simu-
lation space is subdivided into nx × ny × nz grid points.

The density function F (r, h) in this paper is calcu-
lated from the following equation [21].

F (r, h)=
{

405
748πh (−4

9a6 + 17
9 a4 − 22

9 a2 + 1) (0 ≤ r ≤ h),
0 (r > h),

(1)
where a = r/h, and where r is the distance from the
center of particle to a calculation point, and h the effec-
tive radius of the particle. Although we have used this

smoothing function as a density function for the proto-
type, other smoothing functions such as the smoothing
kernel of the SPH could also be used as the density func-
tion.

The simulation space is located as shown in Fig. 2
and the z-axis is set to be the vertical direction. A vir-
tual camera is set along the z axis and the reference
point of the virtual camera is set to be the center of the
simulation space. A virtual screen is then set to be per-
pendicular to the z axis. The virtual screen consists of
nx ×ny pixels. Each pixel corresponds to a grid point on
the grid planes perpendicular to the z axis, as shown in
Fig. 2. The pixels in the screen frame buffer consist of
R, G, B, and α components. To calculate the density of
each grid point influenced by a particle, we use a meta-
ball whose center is the position of the particle. The disk
of intersection between the grid plane and the metaball,
of effective radius is h, is calculated. The densities of
pixels within the disk of intersection are calculated. By
drawing the disks of intersection with the densities and
accumulating the densities in the frame buffer, the den-
sity of each pixel, corresponding to each grid point of the
grid plane, is calculated by using the GPU.

4.1 Density Calculation

To calculate the density at each grid point, texture-mapped
disks are projected onto the screen corresponding to the
grid planes (see Fig. 2). The intersection disk between
the grid plane and the metaball whose center is the par-
ticle and the effective radius of h. The texture mapped
onto the disk represents the density function F on the
disk. The densities on the disk are calculated from the
distance from the center of the particle to the grid point
using Eq. (1). By projecting the disks of the particles,
intersecting the grid plane, onto the screen, and accu-
mulating the densities, the densities of the grid points
on each grid plane are calculated by using the GPU. For

4 Kei Iwasaki et al.

x
y

z

virtual camera

particle

grid plane

simulation
space

virtual screen

h

Fig. 2 Calculation of densities at each grid point by using
splatting.

the computation accuracy in the accumulation of densi-
ties, our method uses floating-point buffers1.

The disks are rendered by using point sprites. This
makes it possible to accelerate the rendering process by
the GPU. The point sprites are hardware functions that
render a point by drawing a square, consisting of four
vertices, instead of drawing a single vertex. The point
sprites are automatically assigned texture coordinates for
each vertex corner of the square. This indicates that each
pixel inside the point sprite is automatically parameter-
ized in the square. Therefore, the distance, d, from the
center of the particle to each pixel of the point sprites
can be calculated by using the fragment program. By
comparing the distance, d, with the effective radius h,
we can determine whether the pixel is within the disk
or not. The density of the grid point corresponding to
the pixel is calculated by inserting the distance, d, into
the density function F . For the density calculation, we
prepare a texture whose parameter is the distance from
the calculation point to the center of the particle. The
density of the pixel corresponding to the grid point is
efficiently calculated by mapping this texture.

The density is scalar and the pixel of the frame buffer
object consists of four components. Therefore, our method
calculates disks of intersection between the particle and
four grid planes at once, and renders four disks by stor-
ing four densities in the RGB and α components. After
drawing all the disks intersecting the four grid planes,
the RGBα components are read from the frame buffer
object into the main memory.

4.2 Acceleration of Density Calculation using Clustering

As shown in Eq.(1), the density contribution from the
particle at the grid point is zero, when the distance be-
tween the particle and the grid point is larger than the ef-
fective radius h. To reduce the computational time of the

1 Our method uses framebuffer objects as floating point
buffers.

density calculation, the particles whose density contribu-
tions are zero are eliminated. The particles are classified
into clusters by using the z coordinates of the particles.
Let zi1 , zi2 , zi3 , and zi4 be the z coordinates of four suc-
cessive grid planes i1, i2, i3, and i4. Cluster Ci (i is the
cluster number) includes the particles pi whose z coordi-
nate pi

z satisfies zi1 − h ≤ pi
z ≤ zi4 + h. To compute the

densities on four grid planes i1, i2, i3, and i4, particles
in the cluster Ci are projected.

4.3 Generation of Surfels

After the density field in the simulation space is calcu-
lated, the iso-surfaces are extracted. The density of the
iso-surface is specified by the user. The iso-surfaces are
sampled by points. The positions of the surfels, si, are
set to the positions of these sample points. Normal vec-
tor, ni, of surfel si is calculated by using the gradient
of the densities. To render the water surfaces, a disk is
assigned to surfel si. The radius of the disk is Ri and
the disk is perpendicular to normal ni of the surfel. The
radius, Ri, of the surfel, si, is assigned and is determined
so that there are no gaps between the surfels. If the dis-
tance between the sampled point and neighbor point is
larger than a threshold, we add points on the iso-surface
to fill gaps between the surfels.

5 Rendering Point-Sampled Water Surface

This section describes the rendering method for water
surfaces represented by surfels. In this section, we first
explain the rendering method of caustics due to wa-
ter surfaces represented by surfels. Then the rendering
method of water surfaces is described.

5.1 Rendering Caustics for Point-Sampled Water
Surface

Our rendering method for caustics is based on Nishita’s
method [13] and Iwasaki’s method [7]. In these methods,
the water surface is represented by a triangular mesh. At
each vertex, the refracted direction of the incident light
is calculated. Then the volumes are created by sweep-
ing the vectors refracted from the triangle mesh. These
volumes are called illumination volumes [13]. The inter-
section triangles between illumination volumes and the
object surfaces are called caustics triangles. However, il-
lumination volumes and caustics triangles cannot be cre-
ated directly from point-sampled water surfaces, since
the surfels representing water surfaces have no connec-
tivity, To address this problem, we propose a rendering
method of caustics triangles for water surfaces repre-
sented by surfels. Moreover, our rendering method are
fully implemented on the GPU, whereas the previous

GPU-based rendering of point-sampled water surfaces 5

illumination
volume

P(x,y+1)
virtual screen

sample points

P(x,y)
P(x+1,y)

incident light

s
ni

si

Ri

virtual camera

object
surface

caustics
triangle c(x,y)

c(x+1,y)

c(x,y+1)

Fig. 3 Virtual screen for rendering caustics.

method [7] calculated illumination volumes and intensi-
ties of caustics triangles on the CPU.

To render caustics for point-sampled water surfaces,
we set a virtual screen horizontally as shown in Fig. 3.
Then point s(x,y) on the water surface corresponding to
pixel P (x, y) of the virtual screen, and the refracted ray
of the incident light at s(x,y) are calculated. An illumina-
tion volume is created by sweeping the refracted vectors
from points s(x,y), s(x+1,y), and s(x,y+1) (or s(x+1,y+1),
s(x+1,y), and s(x,y+1)) that correspond to neighboring
pixels. The vertex c(x,y) of the caustics triangle corre-
sponding to pixel P (x, y) is obtained by calculating the
intersection point between the refracted ray and the ob-
ject surface. By relating s(x,y) and c(x,y) to pixel P (x, y),
s(x,y) and c(x,y) can be calculated on the fragment pro-
gram.

The rendering algorithm of caustics on the GPU is
follows:

1. calculate normal and depth of each point correspond-
ing to each pixel to obtain the point and the refracted
ray.

2. calcualte the intersection point (the vertex of the
caustics triangle) between the refracted ray and the
object surface.

3. calculate intensity at the vertex of the caustics trian-
gle.

4. render caustics triangles.

5.1.1 Calculation of points on the water surface and
normals

The position of s(x,y) is calculated by using the depth
d(x,y) of the water surface from the virtual screen. Nor-
mal, n(x,y), and depth, d(x,y), at point s(x,y) on the water
surface are calculated from the following equations,

n(x,y) =

∑
i g(ri(s)

Ri
)ni∑

i g(ri(s)
Ri

)
, d(x,y) =

∑
i g(ri(s)

Ri
)di∑

i g(ri(s)
Ri

)
, (2)

virtual
screen

water
surface

s(x,y)

P(x,y)

object
surface

P2

P4

refracted ray

P1
P3

Fig. 4 Calculation of the vertex of the caustics triangle.

where g is a Gaussian function whose parameter is dis-
tance, ri(s), between each surfel, si and s(x,y), and re-
turns 0 if ri(s) is larger than radius Ri. The calculation
of the normal, n(x,y), and depth, d(x,y), is accelerated by
using the GPU as the previous method [1]. The normal
n(x,y) and the depth d(x,y) are stored as two textures,
normal map and depth map, respectively.

5.1.2 Calculation of vertices of caustics triangles

By using the depth map, the position of s(x,y) on the wa-
ter surface is calculated on the fragment program. The
refracted vector at s(x,y) is calculated by using the nor-
mal n(x,y). The vertex c(x,y) of the caustics triangle is
obtained by the intersection calculation between the re-
fracted ray from s(x,y) and the object surface. The vertex
c(x,y) is iteratively calculated on the fragment program,
which is similar to [17].

Let us explain the algorithm of the intersection cal-
culation using Fig. 4. We first calculate the point on
the object surface corresponding to each pixel P (x, y)
by rendering the object surface to a texture. We call the
texture, geometry map. Then we calculate the intersec-
tion point iteratively as follows. First, the point P1 on
the object surface corresponding to P (x, y) is calculated
by referring to the geometry map. Then the distance
between s(x,y) and P1 is calculated. If the distance is
smaller than a threshold specified by the user, point P1

is regarded as the intersection point. Otherwise P1 is pro-
jected onto the vector of the refracted ray at s(x,y). The
projected point is referred to as P2. Then the point P3

on the object surface corresponding to P2 is obtained by
using the geometry map. The distance P2P3 is calculated
to determine whether P2 is regarded as the intersection
point. Our method repeats the above processes until the
distance between the projected point on the refracted
ray and the corresponding point on the object surface
becomes smaller than the threshold.

The vertices of the caustics triangles are stored as a
texture to calculate the intensities of the caustics trian-
gles. The texture is referred to as intersection map. More-

6 Kei Iwasaki et al.

over, the vertices of the caustics triangles are required to
render caustics triangles. To do this, the vertices of the
caustics triangles are rendered to a vertex buffer object
that makes the vertices of the caustics triangles be stored
in the video memory.

5.1.3 Calculation of intensities of caustics triangles

The intensity Lc at c(x,y) of the caustics triangle is cal-
culated from the following equation [13]:

Lc = Li cos θiT (θi, θt) exp(−σtlc)Fcfr + La, (3)

where Li cos θi is the intensity of the incident light onto
the water surface, θi is the incident angle between the
normal n(x,y) and the incident light, T (θi, θt) is the Fres-
nel transmittance, σt is the extinction coefficient of the
light in the water, lc is the length between s(x,y) and
c(x,y). Fc is the flux ratio and is calculated from Fc =
S/Sc, where S is the area of the triangle consisting of
the three points on the water surface corresponding to
three pixels of the virtual screen, and Sc is the area of the
caustics triangle. fr is the diffuse reflectance of the ob-
ject surface and La is the intensity of the ambient light.
To calculate the flux ratio, the area of the caustics trian-
gle must be calculated. The area of the caustics triangle
is calculated by using the intersection map that stores
the vertices of the caustics triangles. The intensity Lc is
stored in the video memory2.

5.1.4 Rendering of caustics using caustics triangles

Caustics are rendered by drawing caustics triangles and
accumulating the intensities of the caustics triangles.
Since the vertices of the caustics triangles and the in-
tensities of the vertices are stored in the GPU, caustics
triangles are rendered efficiently.

5.2 Rendering Water Surfaces Represented by Surfels

Water surfaces are rendered through the use of a splat-
ting technique. Our rendering method extends the method
proposed by Botsch et al. [1] to take into account refrac-
tion, reflection and caustics.

Before rendering, we eliminate invisible surfels by us-
ing a backface-culling method. First, the surfels are ren-
dered only to the z-buffer with all z values having an ϵ
offset added and the update of the z-buffer is enabled. ϵ
is specified by the user.

Then, the update of the z-buffer is turned off so that
the overlapping surfels are blended if and only if the
difference of their depth values is less than ϵ. The posi-
tion of the water surface and its normal corresponding

2 In our implementation, the intensity is stored in the ver-
tex buffer object. To render the intensity to the vertex buffer
object, our method uses a pixel buffer object.

to each pixel of the frame buffer is calculated by accu-
mulating the Gaussian weighted normals and depths as
described in Sec. 5.1.1. By using the position and the
normal at each pixel, the reflection and refraction rays
of the viewing ray are calculated per each pixel. The
images of the object surface and caustics viewed from
the viewpoint without the water surface are rendered
to textures. Then the intersection point between the re-
fracted ray and the object surface is calculated by using
the method described in Sec. 5.1.2. The refraction of an
object, with caustics through the water surface is ren-
dered by refraction mapping of the images of the object
and caustics.

6 Results

Fig. 5 shows the result of MPS simulation of making
waves. The numbers of the points representing the water
surface are from 55,000 to 120,000 in this animation. The
average rendering frame rate of these figures is about
43fps. That is, our method can render the water surfaces,
represented by points, including caustics, refraction, and
reflection in real-time. These images are created on a
laptop PC (CPU : Centrino Duo 2.16GHz, 2GB memory)
with a NVIDIA GeForce Go 7900 GTX. The image size
of these figures is 512×512. The size of the virtual screen
for creating illumination volumes is 256 × 64.

The number of water particles used for the simula-
tion is about 150,000. The temporary grid is subdivided
into 2563. The computational time of density calculation
from the particles using the GPU is 0.14 sec. The mem-
ory for calculating the density in the GPU is only 1MB.
For the software calculation, the computational time is
about 8.4 sec. That is, our method using the GPU can
calculate the densities about 60 times faster than the
method using the software. The computational time for
extracting the surfels on the iso-surface is about 0.16 sec.
Our GPU based method extremely reduces the time of
constructing the water surface from the particles com-
pared to the software based method. The relative differ-
ence between the densities calculated by the GPU and
those by the software is about 1.9%. To verify the quan-
tization error due to the GPU based density calculation,
Fig. 6 shows the comparisons of the water surface that is
extracted from the densities calculated by the GPU and
that by the software. The image quality of the water
surface (Fig. 6(a)) calculated by using the GPU based
density calculation is indistinguishable from that by us-
ing the software based density calculation (Fig. 6(b)).

7 Conclusions and Future Work

In this paper, we have presented a fast rendering method
for the particle-based simulation. To calculate the water
surface from the result of the particle-based simulation,

GPU-based rendering of point-sampled water surfaces 7

a temporary grid is created and the densities at each
grid point by using the particles are calculated. We ac-
celerate this density calculation by using a GPU based
splatting method. Then the iso-surface is extracted and
represented by surfels. The rendering method has been
developed for a water surface, which is represented by
the surfels. Moreover, our method can render the reflec-
tion, refraction, and caustics due to the point-sampled
water surface in real-time. Our method drastically re-
duces the times of the surface construction and render-
ing. This makes it possible to easily preview the result
of the particle-based simulation.

In future work, we plan to accelerate the extraction
of surfels by using the GPU. Moreover, we would like to
develop a method for rendering splashes and foams using
surfels.

Acknowledgements This research was partly supported by
the Okawa Foundation.

(a) (b)

Fig. 6 Comparisons of the water surface generated by us-
ing the GPU based density calculation (a) and the water
surface calculated by the software (b). These images are ren-
dered from the particles of the simulation of dropping a par-
allelepiped into the water. The water surfaces with caustics
viewed from above the water surfaces are rendered.

References

1. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-
quality surface splatting on today’s gpus. In: Proc. Euro-
graphics Symposium on Point-Based Graphics 2005, pp.
17–24 (2005)

2. Botsch, M., Kobbelt, L.: High-quality point-based ren-
dering on modern GPUs. In: Proc. Pacific Graphics 2003,
pp. 335–343 (2003)

3. Co, C., Hamann, B., Joy, K.: Iso-splatting: A point-
based alternative isosurface visualization. In: Proc. Pa-
cific Graphics 2003, pp. 325–334 (2003)

4. Enright, D., Marschner, S., Fedkiw, R.: Animation and
rendering of complex water surfaces. In: Proc. SIG-
GRAPH 2002, pp. 736–744 (2002)

5. Foster, N., Fedkiw, R.: Practical animation of liquids. In:
Proc. SIGGRAPH 2001, pp. 23–30 (2001)

6. Guennebaud, G., L.Barthe, M.Paulin: Deferred splatting.
Computer Graphics Forum 23(3) (2004)

7. Iwasaki, K., Dobashi, Y., Nishita, T.: A fast rendering
method for refractive and reflective caustics due to wa-
ter surfaces. Computer Graphics Forum 22(3), 601–609
(2003)

8. Koshizuka, S., Tamako, H., Oka, Y.: A particle method
for incompressible viscous flow with fluid fragmentation.
Computational Fluid Dynamics Journal 29(4), 29–46
(1995)

9. Kunimatsu, A., Watanabe, Y., Fujii, H., Saito, T., Hi-
wada, K., Takahashi, T., Ueki, H.: Fast simulation and
rendering techniques for fluid objects. Computer Graph-
ics Forum 20(3), 57–66 (2001)

10. Lorensen, W., Cline, H.: Marching cubes: A high resolu-
tion 3D surface construction algorithm. In: Proc. SIG-
GRAPH’87, pp. 163–169 (1987)

11. Matsumura, M., Anjo, K.: Accelerated isosurface poly-
gonization for dynamic volume data using programmable
graphics hardware. In: Proc. Electronic Imaging2003, pp.
145–152 (2003)

12. Muller, M., Charypar, D., Gross, M.: Particle-based fluid
simulation for interactive applications. In: Proc. Sympo-
sium on Computer Animation 2003, pp. 154–159 (2003)

13. Nishita, T., Nakamae, E.: Method of displaying optical
effects within water using accumulation-buffer. In: Proc.
SIGGRAPH’94, pp. 373–380 (1994)

14. Pfister, H., Zwicker, M., Baar, J., Gross, M.: Sur-
fels: Surface elements as rendering primitives. In:
Proc.SIGGRAPH 2000, pp. 335–342 (2000)

15. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A.,
Whitaker, R.: Particle based simulation of fluids. Com-
puter Graphics Forum 22(3), 335–343 (2003)

16. Reck, F., Dachsbacher, C., Grosso, R., Greiner, G., Stam-
minger, M.: Realtime isosurface extraction with graphics
hardware. In: Proc. Eurographics 2004 Short Presenta-
tion (2004)

17. Stah, M., Konttinen, J., Pattanaik, S.: Caustics mapping:
An image-space technique for real-time caustics. IEEE
Transactions on Visualization and Computer Graphics
13(2), 272–280 (2007)

18. Stam, J.: Stable fluids. In: Proc. SIGGRAPH’99, pp.
121–128 (1999)

19. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K.,
Saito, T., Tanaka, K., Ueki, H.: Realistic animation of
fluid with splash and foam. Computer Graphics Forum
22(3), 391–400 (2003)

20. Thurey, N., Keiser, R., Pauly, M., Rude, U.: Detail-
preserving fluid control. In: Proc. Symposium on Com-
puter Animation 2006, pp. 7–12 (2006)

21. Wyvill, G., Trotman, A.: Ray-tracing soft objects. In:
Proc. Computer Graphics International, pp. 439–475
(1990)

22. Zwicker, M., Pfister, H., Baar, J., Gross, M.: Surface
splatting. In: Proc. SIGGRAPH 2001, pp. 371–378 (2001)

Kei Iwasaki received the
B.S., M.S., and Ph.D. degrees
from the University of Tokyo
in 1999, 2001, and 2004,
respectively. He is presently
an associate professor in the
Department of Computer
and Communication Sciences,
at Wakayama University,
Wakayama, Japan. His re-
search interests are mainly for
computer graphics.

8 Kei Iwasaki et al.

Fig. 5 Rendering the result of the MPS simulation of making waves.

Yoshinori Dobashi received
the B.E., M.E., and Ph.D. in
Engineering in 1992, 1994, and
1997, respectively, from Hi-
roshima University. He worked
at Hiroshima City University
from 1997 to 2000 as a research
associate. He is presently an as-
sistant professor at Hokkaido
University in the graduate
school of engineering, Japan
since 2000. His research inter-
ests are computer graphics in-
cluding lighting models.

Fujiichi Yoshimoto received
the Ph.D. in computer science
from Kyoto University, Japan
in 1977. He is presently a pro-
fessor in the Department of
Computer and Communication
Sciences, at Wakayama Univer-
sity, Wakayama, Japan. His re-
search interests are in enter-
tainment computing, computer
graphics and CAD.

Tomoyuki Nishita received
the B.E., M.E., and Ph.D. de-
grees from Electrical Engineer-
ing from the Hiroshima Univer-
sity, Japan, in 1971, 1973, and
1985, respectively. He worked
for Mazda Motor Corp. from
1973 to 1979. He has been a
lecturer at the Fukuyama Uni-
versity since 1979, then became
an associate professor in 1984,
and later became a professor in
1990. He moved to the Depart-
ment of Information Science of
the University of Tokyo as a
professor in 1998 and now is
a professor at the Department

of Complexity Science and Engineering of the University of
Tokyo since 1999. His research interests are mainly for com-
puter graphics.

