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Figure 1: Locating optimal viewpoints by individually estimating the visibility quality of each feature subvolume. The value under each image
represents its corresponding estimate normalized to [0.0, 1.0].

ABSTRACT

Optimal viewpoint selection is an important task because it consid-
erably influences the amount of information contained in the 2D
projected images of 3D objects, and thus dominates their first im-
pressions from a psychological point of view. Although several
methods have been proposed that calculate the optimal positions
of viewpoints especially for 3D surface meshes, none has been
done for solid objects such as volumes. This paper presents a new
method of locating such optimal viewpoints when visualizing vol-
umes using direct volume rendering. The major idea behind our
method is to decompose an entire volume into a set of feature com-
ponents, and then find a globally optimal viewpoint by finding a
compromise between locally optimal viewpoints for the compo-
nents. As the feature components, the method employs interval
volumes and their combinations that characterize the topological
transitions of isosurfaces according to the scalar field. Further-
more, opacity transfer functions are also utilized to assign different
weights to the decomposed components so that users can empha-
size features of specific interest in the volumes. Several examples
of volume datasets together with their optimal positions of view-
points are exhibited in order to demonstrate that the method can ef-
fectively guide naive users to find optimal projections of volumes.
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1 INTRODUCTION

Recent advances in visualization hardware allow us to manage
large-scale volume datasets with 3D complicated inner structures.
When visualizing such 3D structures, however, they must be pro-
jected onto the 2D screen in ordinary computational environments.
This requires careful selection of viewpoints because it consider-
ably influences on the amount of information embedded into the
2D projected image. The viewpoint selection is also important in
that psychological studies show that the first view leaves a strong
impression of the target volume [19], although current GPU-based
systems are available for real-time rotation and translation of the
given volume.

Actually, such methods of locating optimal viewpoints have been
proposed especially for 3D surfaces such as polygonal mesh repre-
sentations. These methods basically try to find the best viewpoint
by evaluating the visibility quality of the visible faces or silhou-
ettes of a given 3D mesh, and thus provide a sound viewpoint that
meets our visual preference. Nonetheless, they are still limited to
surface shapes, and cannot be directly applied to solid objects such
as volumes that involve their own characteristic inner structures.

This paper presents a new method of locating optimal viewpoints
for volume visualization, by applying the existing method for 3D
meshes. In this setting, the method finds the best viewpoint of the
volume so that the corresponding projected image becomes opti-
mal by direct volume rendering such as ray-casting. The main idea
behind our method is to decompose the entire volume into several
feature components by analyzing its topological structure, and then
to apply the existing surface-based method for evaluating a locally
optimal viewpoint of each component so that we can find a global
compromise between them. (See Figure 1.) As the feature compo-
nents, the method employs an interval volume (IV) [11, 14], which
is a generalized concept of an isosurface and is defined as a subvol-
ume obtained by sweeping an isosurface component within some
range of scalar field values.

Another advantage is that the method can assign a different



weight to each component according to the significance of its cor-
responding volume feature when calculating the optimal viewpoint.
In the method, opacity transfer functions (TFs) are employed as a
tool for controlling such weight assignment. Actually, emphasis on
regions-of-interest (ROI) using an opacity TF enables naive users
to locate an optimal viewpoint that reflects specific volume features
clearly on the final projected image.

The important strategy of the present method is to find the best
arrangement of the feature components in an final projected image
by avoiding their occlusions as many as possible. This is justified
by the psychological studies of Blanz et al. [5], where they describe
the following three conditions for the viewpoint optimality: signifi-
cance of visible features, stability of the view (with respect to small
transformations), and the number of occluded features. Our method
directly takes into account the first and third conditions, while the
second condition is compatible with the third one because view-
point stability can usually be accomplished by minimizing occlu-
sions among significant features in the projected image.

The remainder of this paper is organized as follows: Section 2
refers to previous work related to our method. Section 3 describes
an existing formula called the viewpoint entropy, which will be used
to evaluate the viewpoint quality for each feature component of
the volume. In Section 4, isosurfaces are first used as the feature
components to locate the optimal viewpoint, and relevant issues
are addressed. Interval volumes and their combinations are then
introduced in Section 5 as more sophisticated feature components
to improve the quality of the viewpoint location. After providing
several results associated with users’ evaluation and discussion in
Section 6, Section 7 concludes this paper and refers to future work.

2 RELATED WORK

One of the pioneering studies on viewpoint1 evaluation is the as-
pect graph representation developed by Koenderink et al. [17]. This
representation classifies the regions of the viewing sphere that sur-
rounds the object into aspects, by identifying equivalent views of
the object edges in a topological sense. The node of the aspect
graph represents an aspect of the target 3D object, and the link a vi-
sual transition between neighboring aspects. The aspect graph rep-
resentation has been intensively studied as a tool for object recog-
nition [9], while its automatic computation is still the subject of
ongoing research [26]. The aspect graph representation, however,
can be applied only to rather simple polyhedra, and the associated
resolution on the viewing sphere is not high enough to locate the
optimal viewpoint precisely.

Locating such optimal viewpoints has been an important prob-
lem in computer vision research, including object recognition and
reconstruction, and thus many methods have been developed for the
purposes. However, in this setting, a set of viewpoints is selected as
optimal viewpoints to provide an appropriate combination of cam-
era positions that fully surrounds the whole surface of the target
object. This problem of planning camera positions is referred to as
the next best view (NBV) problem in computer vision literature.

For example, Gremban et al. [12] found the combination of opti-
mal viewpoints for object recognition by searching a tree structure
that retains the collection of possible camera movements and their
associated aspects. Tarbox et al. [31] developed a method of plan-
ning the optimal arrangement of sensors so that they completely
surround the object surface for its precise shape reconstruction. The
NBV problem has been further tackled by identifying the equivalent
class of object silhouettes seen from available viewpoints [1], and
by optimally distributing the view volumes of the visible surface
to candidate viewpoints [24]. The configuration of such optimal

1View directions for orthogonal projections are also referred to as view-
points in this paper.

viewpoints has been also investigated for acquiring a minimal set
of textures in the image synthesis techniques such as image-based
rendering [10, 15]. However, these methods cannot be applied to
our case directly because their objective is to recover the 3D sur-
face shapes of target objects only.

In the computer graphics applications, on the other hand, several
methods have been proposed to locate the best viewpoint for 3D
polyhedral meshes. For example, Kamada et al. [16] defined an op-
timal viewpoint if it minimizes the number of degenerate faces un-
der orthogonal projection, and Barrel et al. [4] extended this scheme
in order to manage perspective projections effectively. While these
methods offer good viewpoints, their use is still limited to polygo-
nal meshes with a small number of faces.

One solution for the case of general 3D meshes is the viewpoint
entropy, which is formulated by Vázquez et al. [32] to evaluate the
balance of visible faces in 2D projected images. In this formula-
tion, they consider the visibility of each face as its probability, and
find the optimal viewpoint by maximizing the information of the
probability distribution using the Shannon entropy. The viewpoint
entropy works well and has been further applied to image-based
rendering [33] and camera path planning [2]. Furthermore, Lee et
al. [18] have recently developed a new saliency-based method of
finding the viewpoint that maximizes the sum of the saliency for
the visible faces of 3D meshes. However, the targets of these meth-
ods are still limited to surfaces having zero thickness.

The idea of locating optimal viewpoints for volumes has also
been explored simultaneously but independently by Bordoloi and
Shen [6]. Their method evaluates the balance between the contri-
butions of voxels to pixels in the resultant image using the entropy
function, and then finds stable viewpoints with respect to small
transformations as good viewpoints. On the other hand, our method
first decomposes an entire volume into feature subvolumes to find
the best arrangement of the features in the resultant image. This
comparison allows us to claim that our method evaluates the view-
point optimality in 3D space, while their method does in 2D screen
space.

3 VIEWPOINT ENTROPY

The present method evaluates the viewpoint optimality of each
decomposed feature subvolume using an existing surface-based
method. As the surface-based method, we employ the viewpoint
entropy formulated by Vázquez et al. [32], which searches for a
well-balanced distribution of visible faces. This section explains
the formulation of the viewpoint entropy and its actual calculation.

The original version of the viewpoint entropy evaluates the
viewpoint quality under perspective projections. However, in this
method, the formulation is extended to also handle orthogonal pro-
jections that are usually used for direct volume rendering. Sup-
pose that the j-th face of a given 3D mesh has a visible projected
area A j ( j = 1, . . . ,m) on the 2D screen, while A0 denotes the back-
ground area as shown in Figure 2(a). Thus, the total area of the
2D screen S can be calculated as S = ∑m

j=0 A j . If the visibility of
the j-th face (A j/S) is considered as its information probability,
the viewpoint entropy E that estimates the viewpoint quality for the
given 3D mesh can be defined as

E = −

m
∑
j=0

A j
S log2

A j
S . (1)

Note that the definition comes from the formulation of the Shan-
non entropy, and thus Eq. (1) becomes larger as the corresponding
viewpoint achieves more balanced distribution of face visibility.

In the present method, the range of the viewpoint entropy is nor-
malized to [0.0, 1.0] for later convenience. It is clear that Eq. (1)
takes the maximum when all the faces have the same probabilities.
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Figure 2: (a) Assignment of different colors to visible faces on the 2D screen. The viewpoint entropy distributions and the associated best
and worst views (b) for a cube model and (c) a horse model. (d) A reference mesh (in red) on the viewing sphere (in blue) for 162 viewpoint
samples.

This implies that, since the maximum of Eq. (1) is log2(m + 1),
its normalized version can be obtained when dividing it with the
maximum value as

E = −
1

log2(m+1)

m
∑
j=0

A j
S log2

A j
S . (2)

The actual calculation of the viewpoint entropy Eq. (2) can be
done with the help of graphics hardware in the same way as the
method by Barral et al. [4]. For a given viewpoint the projected
area of each face can easily be obtained by counting the number
of pixels that belong to the face when the target object is drawn
into the frame buffer. To discriminate one face from the others, a
different color is assigned to each face in order to establish one-
to-one correspondence between the faces and colors, as shown in
Figure 2(a). Figures 2(b) and (c) show the distributions of the view-
point entropies Eq. (2) over the viewing sphere, and the associated
best and worst views for a simple cube and a 3D horse model. For
the cube model the best viewpoint offers its isometric projection
while the worst one gives its Cartesian projection, and for the horse
model the best viewpoint captures its silhouettes while the worst
one cannot avoid their overlaps.

In finding the optimal viewpoints, we uniformly sample the
viewing sphere that surrounds the target object and compare the
corresponding viewpoint entropies, so as to identify the optimal
viewpoint that achieves the maximum entropy. The viewpoint sam-
ples are generated by referring to the vertices of another reference
mesh (in red) that covers the viewing sphere (in blue) as shown in
Figure 2(d). Actually, the reference mesh is constructed by subdi-
viding an icosahedron twice using the Loop subdivision rule [20],
and thus offers a uniform distribution of 162 viewpoint samples on
the sphere. The top and bottom color-coded disks in Figures 2(b)
and (c) are the projections of the viewpoint entropy distributions on
the viewing sphere seen from the top (the North pole) and the bot-
tom (the South pole), respectively. Here, each disk is color-coded
by referring to the color legend where the color changes over blue,
green, yellow, and red according to the increase in the entropy, and
the black and white spots indicate the best and worst locations of the
viewpoints, respectively. Note that this color-coded representation
is used throughout the paper.

4 LOCATING OPTIMAL VIEWPOINTS USING ISOSURFACES

Although the viewpoint entropy can evaluate the viewpoint opti-
mality for 3D meshes, it cannot cope with volumes directly since
the volumes have their own thickness. Recall that the formulation

of the viewpoint entropy comes from the fact that a 3D mesh can
be decomposed into faces each of which has a distinct contribution
to the final projected image. This leads us to an idea of evaluating
an individual contribution of each voxel in the final visualization
image, for example, obtained using the ray-casting technique. Ac-
tually, Bordoloi and Shen [6] implemented this idea by distributing
the contribution of each voxel to pixels in the final projected image.

However, in actual process of direct volume rendering, all the
voxels do not always have contributions to the final visualization
result. Our experience suggests that we generally accentuate only
specific volume features while disregarding the others to generate
comprehensive visualization results. This scheme is achieved by
the use of TFs, and thus the subjects to be accentuated in the ren-
dering process should be isosurfaces because the TFs usually de-
pend only on the scalar field value. This motivates us to extract
a set of isosurfaces from the given volume, and then to apply the
surface-based method of viewpoint evaluation to each of the ex-
tracted isosurfaces in order to pursue a globally optimal viewpoint.
The remainder of this section is devoted to the formulation of view-
point evaluation based on this idea.

4.1 Formulation of the Viewpoint Entropy with Isosurfaces
The simplest way of introducing isosurfaces is to extract isosurfaces
by uniformly sampling the entire range of the scalar field values,
and then to take the average of viewpoint entropies for the extracted
isosurfaces. Suppose that a set of scalar field values pi (i = 1, . . . ,n)
is obtained by uniformly sampling the entire range of the scalar field
values. For the isosurface Ii (i = 1, . . . ,n) at the scalar field value
pi, we denote the visible area of the j-th face on the 2D screen as
Ai j ( j = 1, . . . ,mi), while the background area is denoted by Ai0.
Since the total area of the 2D screen S remains constant for all the
isosurfaces, we can formulate the viewpoint entropy for the isosur-
face Ii from Eq. (2) as

E iso
i = −

1
log2(mi +1)

mi

∑
j=0

Ai j
S log2

Ai j
S . (3)

The viewpoint entropy of the entire volume E iso is defined as an
average of the above entropies, which is given by

E iso =
1
n

n
∑
i=1

E iso
i . (4)

The viewpoint obtained using the above formulation provides
the rendered images as shown in Figure 3(a), where the electron
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Figure 3: Viewpoint entropy distributions and the associated best and worst views for the proton hydrogen-atom collision dataset: Results
obtained by using (a) isosurfaces, (b) weighted isosurfaces, (c) interval volumes, and (d) weighted interval volumes.

density distribution of the proton hydrogen-atom collision is simu-
lated [11]. In this case, 32 isosurfaces are uniformly sampled from
the entire range of scalar field values. Although the calculated view-
point allows us to identify the centers of the proton and hydrogen-
atom, it still offers an unsatisfactory view because the density dis-
tributions around the two centers, together with the electron charge
transfer between them, have partial overlaps in the resultant image.
Our experiments show that increasing the number of isosurfaces
cannot fully locate the best viewpoint while it gradually improves
the quality of viewpoint location at the cost of computation time.

4.2 Weight Assignment for Isosurfaces Using Transfer Func-
tions

Our strategy for improving the viewpoint positions is to assign dif-
ferent weights to the isosurfaces when averaging their viewpoint en-
tropies in Eq. (4). In general, as described previously, we accentuate
some specific features selectively in the process of volume render-
ing to generate images clear enough to meet our preference. For
this purpose, Eq. (4) is modified by distributing a different weight
λi (i = 1, . . . ,n) to the isosurface Ii, as

E iso =
n
∑
i=1

λi
L E iso

i , (5)

where L = ∑n
i=1 λi.

The remaining issue here is to decide the weight values λi (i =
1, . . . ,n) for the extracted isosurfaces Ii. Here, opacity TFs are em-
ployed to assign different weight values to the isosurfaces since they
play a primary role in rendering volume features selectively. Sup-
pose that we denote the opacity transfer function of the scalar field
value s by T (s). The weight value λi for the isosurface Ii is set to
be T (pi) in this formulation because the isosurface Ii is extracted
by sampling pi in the range of the scalar field values.

Figure 3(b) shows resultant images when an opacity TF is used
to assign different weights to the 32 extracted isosurfaces. Here,
the opacity TF is designed so that it can emphasize the topologi-
cal transitions of isosurfaces with respect to the scalar field. (See
[29, 34].) While the result seems to be better than the previous one,

Figure 4: Level-set graph and its associated interval volume decom-
position of the proton hydrogen-atom collision dataset. Four interval
volumes are subjects to the calculation of the viewpoint entropy.
The nodes of the graph are arranged from top to bottom according
to their scalar field values.

it still suffers from small partial overlaps between the two territo-
ries of the proton and hydrogen-atom along with the charge transfer
in the projected image. Such problems also arise in other volume
datasets if we stick to isosurfaces in evaluating the viewpoint opti-
mality.

5 LOCATING OPTIMAL VIEWPOINTS USING INTERVAL
VOLUMES

This section presents a new method of locating optimal viewpoints,
which is the main contribution of this paper. In the method, an
entire volume is disassembled into interval volumes each of which
captures some specific feature in the volume.

5.1 Decomposition into Interval Volumes
The isosurface-based formulation of the viewpoint entropy cannot
provide satisfactory results even when assigning different weight
values to the isosurfaces using opacity TFs. There are three reasons
for this. First, the isosurfaces are sampled uniformly over the range
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Figure 5: Viewpoint entropy distributions and the associated best and worst views for the simulated two-body probability distribution of a nucleon
in 16O: Results obtained by using (a) weighted interval volumes with a single-dimensional opacity TF, and (b) weighted interval volumes with
a multi-dimensional opacity TF.

of scalar field values, and thus cannot precisely reflect the shapes
of volume features we are interested in. Second, the previous ap-
proach cannot discriminate between the connected components of
an isosurface at one scalar field value while we may want to put
different emphases on them. Third, the isosurface-based approach
neglects thickness of the volume while we are now tackling solid
objects. This is more crucial if we introduce more sophisticated ac-
centuation of volume features together with multi-dimensional TFs.

We therefore introduce new geometric components called inter-
val volumes (IVs) [11, 14] to enable the adaptive sampling of the
3D volume domain according to the arrangement of volume fea-
tures. Actually, an IV is a generalized concept of an isosurface and
is defined to be a subvolume obtained by integrating a connected
component of an isosurface within some range of the scalar field
values2. Here, our method takes advantage of an interface called an
interval volume decomposer (IVD) [27], where each decomposed
IV corresponds to a link of a level-set graph such as a contour
tree [3], which is obtained by tracking the topological transitions
of isosurfaces with respect to the scalar field.

The IVD constructs the level-set graph by detecting changes in
the number of isosurface components [7] and their associated topo-
logical types [22] according to the scalar field from an adaptive
interpolation of voxel samples [28]. Note that the level-set graphs
are usually too sensitive to noise especially in acquired datasets and
thus need some simplification process [8, 28] to delineate the global
structure of the given volumes.

Figure 4 shows a set of decomposed IVs of the proton hydrogen-
atom collision dataset together with the simplified level-set graph.
As shown in the figure, the IVD interface provides a systematic
decomposition of the entire volume that reflects its involved topo-
logical structures.

5.2 Formulation of the Viewpoint Entropy with Interval Vol-
umes

Having obtained the decomposed IVs for the viewpoint calculation,
we apply the viewpoint entropy formulation Eq. (2) to the external
surface of each decomposed IV for outlining its boundary. Denote
the visible area of the j-th face on the exterior surface of the i-
th IV Vi (i = 1, . . . ,n) by Ai j ( j = 1, . . . ,mi), while Ai0 represents a
background area also in this case. The viewpoint entropy for the de-
composed IV Vi can be formulated, in the same way for isosurfaces,
as

E iv
i = −

1
log2(mi +1)

mi

∑
j=0

Ai j
S log2

Ai j
S , (6)

2The IV is originally defined as a subvolume obtained by sweeping an
entire isosurface, not by sweeping its individual connected component.

where S again represents the total area of the screen. This gives the
viewpoint entropy for the entire volume as

E iv =
1
n

n
∑
i=1

E iv
i . (7)

This new formulation locates a viewpoint that yields the visu-
alization images as shown in Figure 3(c). The result reveals that
the IV decomposition scheme pinpoints the viewpoint location that
captures the relative positions of the proton and hydrogen-atom ac-
companied with the charge transfer between them at right angles
without occlusions between their territories.

5.3 Weight Assignment for Interval Volumes Using Transfer
Functions

Of course, similarly to the previous case, different weights can be
assigned to the decomposed IVs according to the importance of
their associated features when calculating the optimal viewpoint.
Here, opacity TFs are again used to achieve such weight assign-
ment. However, in this case, we have no need to restrict ourselves to
single-dimensional TFs that depend only on the scalar field values;
we can utilize multi-dimensional TFs to assign different weights to
specific ROI because the IV-based formulation allows us to adap-
tively sample opacity values in the volume due to the level-set
graph-based analysis.

Our formulation defines the weight of the IV Vi as the average
of the opacity values associated with the voxels within that IV. Let
us denote a voxel contained in the IV Vi as vi j ( j = 1, . . . ,ai), and
its associated opacity value as ti j ( j = 1, . . . ,ai). The weight value
λi(i = 1, . . . ,n) to be assigned to Vi can be defined as

λi =
1
ai

ai

∑
j=1

ti j, (8)

where ai is the number of voxels contained in Vi. Accordingly, the
total viewpoint entropy is revised as

E iv =
n
∑
i=1

λi
L E iv

i , (9)

where L = ∑n
i=1 λi.

The weight assignment to IVs provides the distribution of the
viewpoint entropies and the resultant images as shown in Fig-
ure 3(d), which are the same as Figure 3(c). Here, the same opacity
TF as Figure 3(b) is used to assign different weights to the decom-
posed IVs. This formulation also allows us to pinpoint the location
of the best viewpoint in connection with the opacity TF design if we
take into account the inner structures in the given volume. Figure 5
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Figure 6: Neighboring IVs to be emphasized and their associated
links in level-set graphs.

shows such an example where the two-body probability distribution
of a nucleon in 16O is simulated [21]. Here, the visualization result
together with the viewpoint location has been enhanced by replac-
ing a simple single-dimensional opacity TF (Figure 5(a)) with a
multi-dimensional opacity TF that emphasizes the inner structures
in the volume [30] (Figure 5(b)).

5.4 Formulation of the Viewpoint Entropy with the Combina-
tions of Neighboring Interval Volumes

As seen in the previous figures, the individual IVs serve as reason-
able feature components for locating optimal viewpoints. Nonethe-
less, they incur another problem that we cannot take into account
the relative positions of such IVs when locating optimal viewpoints.
For example, we are likely to find a viewpoint that arranges two
neighboring IVs side by side without any overlaps on the screen
especially if they are in contact with each other. Finding such a
viewpoint is difficult because we still estimate the visibility quality
of each decomposed IV separately.

We tackle this problem by identifying important combinations of
neighboring IVs that should be projected on the screen side by side,
and then evaluating the viewpoint quality together with their rela-
tive positions in 3D space. Such IV combinations definitely share
an isosurface component where some topological isosurface tran-
sition, such as isosurface merging and splitting, is about to occur.
Since each decomposed IV corresponds to a link of the level-set
graph in our framework, we extract a combination of neighboring
IVs if their corresponding links share the node of some specific
type. Considering the isosurface transitions according to the scalar
field together with the level-set graph, we identify such IV combi-
nations as those depicted in Figure 6 where the corresponding links
are drawn in red. Note that the figure depicts subgraphs around
nodes of the specific types in the level-set graph3 where the links
are arranged from top to bottom with respect to the scalar field.
Also note that a solid link corresponds to an isosurface that expands
as the scalar field value decreases while a hollow link represents an
isosurface that shrinks [29].

We are now ready to revise the IV-based formulation of view-
point entropy that takes into account the relative positions of spe-
cific IV combinations. Suppose that the i-th IV Vi is paired with
the j-th IV V j in some specific combination in Figure 6. The view-
point entropy for each IV in the combination can be calculated us-
ing Eq. (6) by identifying the visible faces of the IV. However, if
the faces of Vi are partially occluded by V j with some viewpoint
as shown in Figure 7(a), we calculate the corresponding viewpoint

3This figure only shows non-degenerate topological transitions but we
can similarly handle degenerate cases where three or more isosurface com-
ponents are involved in the transition.

=⇒
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Figure 7: (a) Neighboring IVs having overlaps. (b) The occluded
region will be painted in the background color when evaluating the
viewpoint quality.

entropy by painting the occluded face regions in the background
color, as shown in Figure 7(b). This special handling together with
Eqs. (6), (8) and (9) obviously allows us to avoid undesirable oc-
clusions between Vi and V j in the combination.

Figure 8 reveals the effects of emphasizing the relative positions
of neighboring IVs in the specific combination for the hydrogen-
atom dataset. Figure 8(a) shows the result obtained by individually
estimating the decomposed IVs while Figure 8(b) shows that ob-
tained by taking into account the relative positions of feature IV
combinations. These results prove that the new formulation pro-
vides us with the more sophisticated view of the target volume by
taking into account the arrangement of feature subvolumes in the
final projected image.

6 RESULTS

6.1 Results of Viewpoint Calculations

This section exhibits several results of viewpoint calculation to
demonstrate the feasibility of the present framework.

Figure 3 shows visualization results for the proton hydrogen-
atom collision dataset [11], where individual isosurfaces and in-
dividual IVs are used as feature components with uniform and non-
uniform weight assignment. Note that each visualization result is
accompanied with the color-coded distribution of the viewpoint en-
tropies on the viewing sphere, where the sphere is seen both from
the top (the north pole) and bottom (the south pole). The color
legends in Figures 2(b) and (c) represent how to assign colors ac-
cording to the amplitude of the viewpoint entropy. It is clear from
the visualization results that we can pinpoint the optimal viewpoint
location once we have introduced IVs as the feature components for
the analysis of the volume. The computation time for the viewpoint
analysis is approximately 10 seconds using a 3.0GHz Pentium IV
PC with 2GB RAM in the cases of Figures 3(c) and (d).

Figure 5 presents visualization results for the simulated two-
body probability distribution of a nucleon in 16O [21], where in-
dividual IVs are used as feature components together with weight
assignments using single- and multi-dimensional opacity TFs. As
seen from Figure 5, the multi-dimensional opacity TF can illumi-
nate the multi-layered structures in the volume more clearly if it is
designed to emphasize the inner structures [30]. Figure 8 demon-
strates the effect of emphasizing the relative positions between im-
portant neighboring IVs for the hydrogen atom dataset. Actually,
Figure 8(b) reveals a better view of the target volume rather than
Figure 8(a) because the occlusion between paired IVs is minimized.

The viewpoint selection accompanied with the distributions of
viewpoint entropies for other volumes are also provided in Figure 9
where the combinations of IVs are employed as feature compo-
nents. Here, Figures 9(a), (b), (c) and (d) show visualization results
of the foot dataset [21], a laser fusion implosion dataset [25], the
tooth dataset [23], and the vortex dataset, respectively. Note that,
for the cases in Figures 9(c) and (d), the same opacity TFs as in [6]
are used to assign different weights to the decomposed IVs.
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Figure 8: Viewpoint entropy distributions and the associated best and worst views for the dataset of the simulated electron density distribution
in a hydrogen atom: Results obtained by using (a) weighted interval volumes, and (b) weighted combinations of interval volumes.
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Figure 9: Results of optimal viewpoint calculation: (a) the human foot medical dataset, (b) a simulated dataset of implosion in laser fusion,
(c) the tooth dataset, and (d) the vortex dataset. All the calculations are conducted by using weighted combinations of interval volumes.

6.2 Users’ Evaluation

To verify the present framework, we asked 32 graduate students
majoring in computer graphics and visualization to evaluate visu-
alization images taken from 42 multiple viewpoints that are uni-
formly spaced on the viewing sphere. The graduate students are
informed of what is involved in the dataset, and requested to rate
clearer images at higher marks by understanding the associated in-
ner structures. Figure 10 shows the color-coded distribution inter-
polated from such evaluated marks at 42 viewpoints for the cases
in Figure 3 and Figure 9(c). Both results show that our formula-
tion can roughly simulate the users’ preference in selecting optimal
viewpoints. Note that in both cases we generated visualization im-
ages by suppressing the influence of specular illuminations so that
we can avoid unexpected side effects of light illuminations.

6.3 Discussion

As described in Section 1, our method searches for the viewpoint
that satisfies the three conditions derived from psychological stud-
ies [5]. For this purpose, our method partitions the entire volume
into feature IVs by referring to the level-set graph that delineates
the global topological structure of the volume. This implies that the

feature analysis of our approach assumes that the given volume con-
tains some characteristic global structure. Thus, our method usu-
ally provides more reasonable results for simulated datasets rather
than acquired datasets that inevitably involve unstructured high-
frequency noise. However, once the feature IVs have been success-
fully identified, our method provides satisfactory results even with
any opacity TFs. Actually, the results in Figures 9(c) and (d) are ob-
tained using opacity TFs that have been designed without referring
to the corresponding level-set graphs.

7 CONCLUSION AND FUTURE WORK

This paper has presented a new method for locating the optimal
viewpoint in rendering volumes by applying the existing method
for 3D surface meshes. The main idea behind the method is to
decompose the entire volume into feature IVs, and then calculate
the locally optimal viewpoints for the decomposed IVs to find a
global compromise between them. The method introduces opacity
TFs to assign larger weights to specific feature IVs so that we can
attain more effective viewpoint exploration. The relative positions
of the feature IVs are also taken into account in order to formulate
a more reliable function for evaluating the viewpoint quality. The
proposed method can provide naive users with useful criteria for the
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Figure 10: User-evaluated distribution of viewpoint optimality (a) for
the proton hydrogen-atom collision dataset and (b) tooth dataset.
Each distribution is compared with that of our method.

optimal viewpoint that effectively illuminates the volume features
using direct volume rendering such as ray-casting.

For future research new camera path planning using the pro-
posed criteria will be interesting when we quickly investigate in-
ner structures of static and time-varying volume datasets. We can
also incorporate entropy-based light planning phase [13] into the
method so that we can integrate the arrangement of features with
light source placement. Relationships of our formulation with hu-
man psychological preference in viewpoint selection should be in-
vestigated more in detail. Software/hardware accelerated computa-
tion of optimal viewpoints for volumes is also an interesting theme
for future research.
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