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Abstract

The rapid growth in computer graphics and digital cam-
eras has resulted in computer users being able to easily
produce digital images. As a result, the need to display
and print digital images has increased. Nowadays, high-
resolution display and printing devices are available to
users. Therefore, high-resolution images are needed in or-
der to produce high quality displayed images and high qual-
ity prints. However, since high-resolution images are not
usually provided, there is a need to magnify the original im-
ages. Previous methods on magnifying images have the dis-
advantage that either the sharpness of the edges cannot be
preserved or that some distinct artifacts are produced in the
magnified image. In this paper, we present a novel method
for doubling the size of images in which the sharpness of the
edges is preserved without introducing distinct artifacts in
the magnified images. The proposed method consists of two
steps, first generation of an initial magnified image and then
progressively refining this image to produce a high quality
magnified image. The experimental results show that with
the proposed method it is possible to produce magnified
images of comparable, and in some cases superior, visual
quality to those produced using previous methods.

1. Introduction

Nowadays, there is a large amount of digital images
available to computer users. This is caused by the rapid
growth both in computer hardware and software technolo-
gies. Low price digital cameras are now widespread, and as
a result users are able to buy them and take as many dig-
ital images as desired. The significant development in the
field of computer graphics has also boosted the production
of digital images.

As computer users become more familiar with digital im-
ages, the need to display and print them also increases. In
an era where high-resolution display and printing devices
are common, it is crucial that high-resolution images are
available in order to produce high quality displayed images

and high quality prints. This is particularly important for
desktop publishing, large artistic printing, etc. The problem
is that high-resolution images are not usually provided. In
these cases, there is a need to magnify the original images.
Therefore, the development of a good image magnification
algorithm is very important.

Until now, a large number of methods for magnify-
ing images have been proposed. However, previous work
on magnifying images has the disadvantage that either the
sharpness of the edges cannot be preserved or that some
highly visible artifacts are produced in the magnified image.
This paper presents a method for magnifying images that
produces high quality images in the sense that the sharp-
ness of the edges are preserved without introducing distinct
artifacts in the magnified images.

The main contribution of this paper is a novel progres-
sive approach for doubling the size of an input image. Our
approach starts by creating an initial magnified image tak-
ing into account the derivatives between the pixel values
during interpolation (considering edges in an implicit way).
The initial magnified image is then progressively refined to
increase the sharpness of the magnified image.

2. Related work

The simplest way to magnify images is by using the pixel
replication method. However, the resulting magnified im-
ages have jagged edges. More elaborate approaches use the
bilinear or the bicubic interpolation. Commercial software
Adobe Photoshop [1] provides these two functions for in-
terpolating images. Other methods, using the B-spline in-
terpolators [8, 22, 11, 21] or the cubic convolution methods
[10, 23, 24] have also been proposed. However, these meth-
ods tend to blur the edges and cause them to be jagged.

Recently, research on interpolating images taking into
account the edges has gained much attention. Allebach and
Wong [3] and Salisbury et al. [19] proposed methods that
search for edges in the input image and use them to as-
sure that the interpolation does not cross them. The prob-
lem is one of how to define and find the important edges
in the input image. Other edge-adaptive methods have been
proposed by Jensen and Anastassiou [9], Li and Orchard



[12], and Muresan and Parks [15, 16, 17, 18]. The com-
mercial software Genuine Fractals [2] also uses an edge-
adaptive method to magnify images, but the details of the al-
gorithm are not provided. Currently, the methods presented
in [12, 18] are the most widely known edge-adaptive meth-
ods. They can well enough avoid jagged edges, but a lim-
itation is that they sometimes introduce highly visible ar-
tifacts into the magnified images, especially in areas with
small size repetitive patterns.

Yu et al. [25] presented a method that computes a tri-
angulation of the input image where the pixels in the input
image are the vertices of the triangles in the triangulation.
The input image at any arbitrary scale is reconstructed by
rendering its triangulation. However, since the edges in the
input image are approximated using piecewise linear seg-
ments, curved edges cannot be properly reconstructed espe-
cially when the scaling factor is a large number.

Morse and Schwartzwald [14] presented a level-set re-
construction method to solve the problem of jagged edges.
Their approach starts by magnifying the input image using
the bicubic interpolation method, then iteratively smooth-
ing the contours in the image. This approach, however, does
not overcome the blurring problem found in the bicubic in-
terpolation method.

Schultz and Stevenson [20] proposed a Bayesian ap-
proach to magnify images by hypothesizing the a priori
probability. Atkins et al. [4], Hertzmann et al. [7], and Free-
man et al. [6] proposed methods that learn the correspon-
dences between low and high resolution images from a set
of training data. The advantage of these approaches is that
fine details can be added when producing high-resolution
images when the input image is in the same class of image
as the training data. The disadvantages of these approaches
are that they will fail if the input image is not in the same
class as the training data and that the computational cost is
high.

Variational based approaches for image magnification
have been presented by Malgouyres and Guichard [13] and
Ballester et al. [5]. The magnified images obtained using
these methods are better than those obtained using the bicu-
bic interpolation method. However, since these methods
solve optimization problems where all the pixels in the mag-
nified image are unknowns, these methods, too, have high
computational costs. As a result, they are not suitable for
practical use.

We propose a progressive method for magnifying an im-
age. In our method, we first create an initial magnified im-
age, then we gradually refine the image until it becomes
sharp. In the refinement process, the value of each pixel is
refined by performing a local optimization. From experi-
mental results, using the proposed method we are able to
produce sharp magnified images without generating distinct
artifacts.

3. Overview

Given an input image I of size w × h pixels and a scal-
ing factor s (s is a real number), the problem is to create a
magnified image Is of size �sw� × �sh� pixels.

When s is a large number, generally it is better to mag-
nify the input image gradually in order to produce a high
quality magnified image. Therefore, our approach is as fol-
lows. Let n = �log2s�. The magnified image Is is created
by doubling the size n times starting from I , producing an
image I2n

of size 2nw× 2nh pixels, then scaling down I2n

by the scaling factor s/2n using the bicubic interpolation
method resulting in Is.

In Section 4, we will describe our progressive approach
for magnifying a gray scale image to twice its original size.
Color images can be magnified by applying the proposed
method to each color channel.

4. Progressive image magnification

In this section, we describe a method to magnify a gray
scale image to twice its original size. The gray level of a
pixel is defined as a value between 0.0 and 1.0. Let the size
of the input image I be w × h pixels. The size of the out-
put image I2 is 2w × 2h pixels. We assume that the pixels
at the locations (2i, 2j), (0 ≤ i ≤ w− 1, 0 ≤ j ≤ h− 1) of
I2 correspond to the pixels at the locations (i, j) of I . In the
rest of this paper, we will use the term original pixels to re-
fer to the pixels at (2i, 2j) in the magnified image.

We magnify the input image in two steps. In the first step,
an initial magnified image is created from the input image
(Section 4.1) using a simple image magnification method
that performs adaptive weighted average interpolation be-
tween the known pixel values. The result of this process is
a magnified image that has sharper edges than the results of
the other simple image magnification methods, for instance
the bicubic interpolation method.

However, one can still distinguish that the initial magni-
fied image is blurred compared to the input image. To create
a high quality (sharp) magnified image, in the second step,
the initial magnified image is progressively refined. For rea-
sons that will become clear in the next section, the pixels at
(2i, 2j) in the initial magnified image usually do not have
the same values as those of their corresponding pixels (i, j)
in the input image. A sharp magnified image can be ob-
tained by refining the initial magnified image until the val-
ues of these pixels match the values of their corresponding
pixels in the input image (Section 4.2).

4.1. Initial magnified image

We have tested several simple image magnification
methods, for instance, the bicubic interpolation and the cu-
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Figure 1: (a) Computing the value of the pixel at (2i +
1, 2j+1) (the light gray pixel at the center) using the values
at the four corner pixels (the black pixels). (b), (c) Comput-
ing the values of the pixels at (2i + 1, 2j) (the gray pixel at
the center) and (2i, 2j + 1) (the dark gray pixel at the cen-
ter) using the values at the four side pixels (the black and
the light gray pixels).

bic convolution, for creating the initial magnified image.
However, these methods tend to blur the edges in the im-
age too much. In this section, we propose a simple image
magnification method for doubling the size of the input im-
age without blurring the edges too much. In our method,
the initial magnified image is created in four steps.

In the first step, the values of the pixels at the locations
(2i, 2j), (0 ≤ i ≤ w−1, 0 ≤ j ≤ h−1) are set by copying
the values at pixels (i, j) in the input image.

In the second step, the values of pixels where the pix-
els at their four corners have values (pixels at the locations
(2i + 1, 2j + 1) as shown in Figure 1(a)) are computed by
interpolating the values at the four corner pixels (the four
black pixels). The values are computed as the weighted av-
erage of the values at the four corner pixels.

P (2i + 1, 2j + 1) =

∑
(x,y)∈D W (x, y)P (x, y)
∑

(x,y)∈D W (x, y)
, (1)

where P (x, y) and W (x, y) are the value and the
weight of the pixel at location (x, y), respectively, and D =
{(2i, 2j), (2(i+1), 2j), (2i, 2(j+1)), (2(i+1), 2(j+1))}.

The weights of the corner pixels are computed as fol-
lows. P (2i + 1, 2j + 1) is located between P (2i, 2j) and
P (2(i + 1), 2(j + 1)). If the difference between the val-
ues of P (2i, 2j) and P (2(i + 1), 2(j + 1)) is small, then it
is likely that there is no edge between these two pixels and
their weights should be large. However, if the difference is
large, then there is an edge between the two pixels. To pre-
serve the sharpness of the edges, we do not want to inter-
polate across the edges. Therefore, their weights should be
small. Let d = P (2i, 2j) − P (2(i + 1), 2(j + 1)). Con-
sidering the above, W (2i, 2j) and W (2(i + 1), 2(j + 1))
are defined as exp(−d2). The weights of the other two cor-
ner pixels are computed in the same manner.

In the third step, the values of pixels where the pix-
els at their four sides have values (pixels at the locations
(2i+1, 2j) as shown in Figure 1(b) and those at (2i, 2j+1)
as shown in Figure 1(c)) are determined by interpolating the

values of the four side pixels (the black and the light gray
pixels). The interpolation is performed using the same ap-
proach described in the second step.

At this point, all the pixels in the initial magnified image
have values. However, there is a problem in that, in those re-
gions where the colors should be uniform, the values of the
pixels at (2i, 2j) differ from the values of their surround-
ing pixels, resulting in color discontinuities. To solve this
problem, in the fourth step, the values at pixels (2i, 2j) are
computed by interpolating the values of their eight neigh-
bors. Again, the interpolation is performed using the same
approach as the one in the second step.

4.2. Progressive refinement

Since the pixel values in the initial magnified image are
computed by interpolating the values of several neighbor-
ing pixels, the initial magnified image is blurred compared
to the input image, especially at edges.Our goal is to pro-
duce a magnified image that is as sharp as the input image.

As mentioned in Section 4.1, the final values of the pix-
els at (2i, 2j) are computed by interpolating the values of
their neighboring pixels. As a result, the values at such pix-
els usually do not match the values at their corresponding
pixels (i, j) in the input image. Assume that the pixel value
at (i, j) differs greatly from the pixel value at (i + 1, j)
in the input image (that is, there is an edge between these
two pixels). If we make the values of their corresponding
pixels in the magnified image (the pixels at (2i, 2j) and
(2(i+1), 2j)) to match their values in the input image, then
we can obtain a sharp edge between these pixels in the mag-
nified image.

The problem is how to determine the values of the pix-
els other than the original pixels. To solve this problem, we
use the original pixels to guide the transformation of the val-
ues of the rest pixels. The idea of our approach is to sharpen
the initial magnified image by refining the image so that the
values at the original pixels match their values in the input
image. The refinement is performed progressively by trans-
forming the value of each pixel in the magnified image, pro-
ducing a new magnified image that has colors closer to the
input image.

The value of each pixel is transformed as follows. As-
sume that we want to transform the value of pixel P at
(2i+1, 2j+1). Let p be the current value of this pixel and q
be the new computed value of the pixel (q is still unknown).
The four pixels at the corners of P (the four black pixels in
Figure 1(a)), Pm (m = 1, ..., 4) are the original pixels, that
is the pixels which have the corresponding pixels in the in-
put image. Let pm and qm be the value of Pm in the cur-
rent magnified image and in the input image, respectively.
Now, we have four pairs of values (pm, qm) (m = 1, ..., 4)
and a pair of values (p, q) where q is unknown.



As mentioned previously, one of the goal of the refine-
ment process is to make the values of the original pixels
to match the values of their corresponding pixels in the in-
put image. When the refinement process is done we expect
that the values of pm are equal to qm. This means that at the
end of the refinement process, if we plot the pairs of val-
ues (pm, qm) in the 2D graph where the x and y axes rep-
resenting the values of pm and qm, respectively, then the
pairs (pm, qm) are located on a straight line y = x. This
also means that during the refinement process, as the val-
ues of pm change closer and closer to the values of qm, then
the pairs of values (pm, qm) (m = 1, ..., 4) can be approxi-
mated using a straight line. Thus, we can write

qm = αpm + β (m = 1, ..., 4). (2)

Since P is located between Pm (m = 1, ..., 4), it is rea-
sonable to assume that point (p, q) is also located on the
line expressed by Equation 2. As a result, we can compute
q, which is the transformed value of p using Equation 2. The
problem is how to compute the parameters α and β. It is ob-
vious that in most cases, it is impossible to find a pair of val-
ues for α and β that satisfies Equation 2.

We solve this problem by using an optimization (least
squares) approach. We define an error function E using the
following equation.

E =
∑

m

wm(qm − αpm − β)2, (3)

where wm = k(dm) are the weights of the corner pix-
els (k(u) is a non-negative B-spline kernel [23, 19] and
dm is the Euclidean distance between P and Pm). We
compute the weight as a function of distance because the
nearer a pixel is located to P the larger its weight should
be. Since we do not want negative weights, we choose the
non-negative B-spline kernel from among the existing in-
terpolation kernels (most of the interpolation kernels, for
instance the cubic convolution kernel [23], have negative
lobes). The parameters α and β are computed such that the
value of E is minimized. This is achieved by solving the fol-
lowing system of linear equations containing the equations
∂E/∂α = 0 and ∂E/∂β = 0.

∑

m

wmpm
2α +

∑

m

wmpmβ =
∑

m

wmqmpm. (4)

∑

m

wmpmα +
∑

m

wmβ =
∑

m

wmqm. (5)

The approach mentioned above will fail if all the val-
ues of pm are close to each other since the determinant of
the system of linear equations will be near to zero, result-
ing in a considerable possibility of numerical error. In this
kind of case, we set α to one and use the following equa-
tion to define the approximation.

qm = pm + β (m = 1, ..., 4). (6)

(a) (b) (c)

Figure 2: The original pixels (the black pixels) used for re-
fining the values of the pixels at (a) (2i + 1, 2j) (the gray
pixel), (b) (2i, 2j +1) (the dark gray pixel), and (c) (2i, 2j)
(the black pixel at the center).

Then, the error function E becomes

E =
∑

m

wm(qm − pm − β)2. (7)

The optimal value of β is

β =
∑

m wm(qm − pm)∑
m wm

. (8)

Using the computed parameters, the value p at pixel P is
transformed to a new value q. Let qmax = max{qm} and
qmin = min{qm}. Since P is located between Pm (m =
1, ..., 4), we make sure that its new value q is between the
values of qmax and qmin. If q is larger than qmax, then q is
set to qmax whereas if q is smaller than qmin, then q is set
to qmin.

The values of the rest of the pixels are transformed in
the same manner. The values of the pixels at the locations
(2i+1, 2j) and (2i, 2j +1) are transformed using the near-
est six original pixels, that is the six black pixels in Figures
2(a) and (b), respectively. The original pixels (2i, 2j) are
transformed using the nearest eight original pixels and it-
self, that is the nine black pixels in Figure 2(c). We have
tested transformation of the values of the original pixels di-
rectly to their values in the input image. In this case, the re-
fining process is performed only once. However, from ex-
perimental results, this approach produces magnified im-
ages that are not very sharp compared to the input images.
When refining the value of an original pixel using itself and
its neighbors, its own value is assigned the largest weight
compared to its neighboring pixels, and as a result, its re-
fined value will get closer and closer to the value of its cor-
responding pixel in the input image.

The refining process is performed until the differences
between the values of the original pixels, the pixels at
(2i, 2j) in the magnified image, and the values of their cor-
responding pixels, the pixels at (i, j) in the input image,
are below a certain threshold. From experimental results, in
most cases the refining process is performed for less than
ten iterations.



(a) the input image (b) the initial magnified image (c) the result after one iteration

(d) the result after four iterations (e) the final magnified image

Figure 3: Magnifying a butterfly image to twice its original size. (a) The input image, (b) the initial magnified image, (c)
the refined image after one iteration, (d) the refined image after four iterations, and (e) the final magnified image after eight
iterations.

5. Results and discussions

Figure 3 shows the result of doubling the size of a but-
terfly image (Figure 3(a)). The size of the input image is
216 × 216 pixels. Figure 3(b) shows the initial magnified
image. Figures 3(c) and (d) show two intermediate images
during the refinement process. Figure 3(e) shows the final
magnified image obtained after eight refinement iterations.
It is clear that the edges, for instance the edges near the an-
tenna of the butterfly, in the magnified image after the re-
finement process are sharper compared to the edges in the
initial magnified image.

Next, we applied our method to three input images in or-
der to examine the convergence behavior of the proposed

refinement algorithm, We doubled the size of three input
images, the butterfly image (Figure 3(a)), the Barbara im-
age (Figure 6(a)), and the mandrill image (Figure 6(b)). The
sizes of the Barbara and the mandrill images are 512 × 512
pixels.

Since we check convergence by comparing the values of
the original pixels and their corresponding pixels in the in-
put image, to examine the convergence behavior, we plot
a graph that shows the changes of the maximum differ-
ences, during the refinement process, between the values
of the original pixels in the magnified images and their cor-
responding pixels in the input images. The graph in Figure
4 is the plotting result when we applied our method to the
three test images. Please note that we define the gray level
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Figure 4: The graph showing the changes of the maximum
differences, during the refinement process, between the val-
ues of the original pixels in the magnified images and their
corresponding pixels in the input images.

of a pixel as a value between 0.0 and 1.0, and thus the val-
ues of differences between pixels are in the range of 0.0 to
1.0.

We observed that our refinement algorithm behaved sim-
ilarly for all the three test images. The initial magnified
images (when the iteration is zero) have the largest differ-
ence values. Generally, the pixels near the edges in the im-
age have large difference values. After each refinement step,
the maximum differences decreased to almost half the val-
ues at the previous step. After several iterations, the differ-
ences are so small, as a result, we can get magnified images
that have almost the same visual quality as the final magni-
fied images. For instance, in the case of the butterfly image,
the result after four iterations (Figure 3(d)) have almost the
same visual quality as the final result after eight iterations
(Figure 3(e)).

As for the computational times, the two times magnifi-
cations took about six seconds for the butterfly image and
about thirty seconds for the Barbara and the mandrill im-
ages. The computations were performed on a machine with
2.0 GHz Xeon.

5.1. Comparison to other methods

Figure 5 compares the results of the proposed method
and the bicubic interpolation method when magnifying the
butterfly image by a factor of four. We used the bicubic in-
terpolation function in Adobe Photoshop [1] in the com-
parison. For the comparison, we only show some portions
of the magnified image. One can observe that using the
proposed method, we can produce magnified images with
sharper edges than the bicubic interpolation method.

(a) mascot (b) four times magnification

Figure 9: Magnifying (a) a mascot image four times its orig-
inal size. (b) Jagged straight line can be seen in the region
of the magnified image that corresponds to the region in-
side the red rectangle shown in (a).

We also performed some comparisons to a more elab-
orate method. There are many methods proposed on im-
age magnification as mentioned in Section 2. From a prac-
tical view, the edge directed methods are the state-of-the-
art technologies of the image magnification methods. They
are able to produce smoother and sharper edges in the mag-
nified images compared to other approaches and they also
do not depend on learning sets. Therefore, we chose the
edge directed method for performing the comparison. We
compared our results and the results of the latest edge di-
rected method proposed by Muresan and Parks [18]. They
have proposed several image magnification methods and the
method in [18] produces the best results. We also chose this
method because it generally produces better results than the
other edge directed interpolation methods.

Figure 6 shows the input images used for the compari-
son. The input images were magnified by a factor of four.
As shown in Figure 7(a), highly visible artifacts were pro-
duced in the result using the method in [18]. On the other
hand, using our method, we produced a magnified image
(Figure 7(b)) with sharper and better quality edges. Figures
7(c) and (d) show the results when both methods were ap-
plied to magnify a mandrill image containing fine textures.
In the areas of fine textures (areas under the eye), it is easier
to distinguish the different regions in the image created us-
ing our method (Figure 7(d)) than the one created using the
method in [18] (Figure 7(c)).

5.2. Magnification of color images

The magnification of a color image is performed by in-
dependently applying the proposed method to each color
channel. Figure 8 shows the result of magnifying a color
image which is an RGB image. The size of the input flower
image (Figure 8(a)) is 200 × 200 pixels. Figure 8(b) shows
the result of magnifying this flower image by a scaling fac-
tor of eight.



5.3. Limitations

The method used to compute the initial magnified image
does not guarantee the smoothness of the edges in the result-
ing image. As a result, jagged edges can appear in the final
magnified image (Figure 9). In order to further increase the
quality of the magnified image, we would like to incorpo-
rate the level-set reconstruction method [14] to smooth the
edges before performing the refinement process.

6. Conclusions and future work

In this paper, we have presented a novel approach for
doubling the size of an input image. The important contri-
bution of this paper is a method to sharpen a magnified im-
age guided by its corresponding low-resolution image using
the optimization approach.

To magnify an input image, an initial magnified image is
created by using a simple magnification method that consid-
ers the derivatives between the pixel values when comput-
ing the weights of the pixels during interpolation. The initial
magnified image is then progressively refined until the col-
ors match those of the input image, producing a high qual-
ity magnified image. Employing the proposed method, we
are able to produce magnified images that have sharp edges
without introducing distinct artifacts.

Interesting future work is to extend the proposed method
to deal with the problem of increasing the resolution of
other types of data such as 3D volume data and 2D/3D vec-
tor fields.
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(a) the input image (b) the result using the bicubic interpolation (c) the result using the proposed method

(d) the input image (e) the result using the bicubic interpolation (f) the result using the proposed method

Figure 5: Magnifying the butterfly image four times. (a) and (d) are the input images, (b) and (e) are the results obtained
using the bicubic interpolation function in Adobe Photoshop [1], (c) and (f) are the results obtained using our method.

(a) Barbara (b) mandrill

Figure 6: The images used for comparing the proposed method and the method of Muresan and Parks [18]. These images are
magnified four times and Figure 7 shows the portions of the magnified images that correspond to the regions inside the black
rectangles shown here.



(a) the magnified Barbara image using (b) the magnified Barbara image using
the method in Muresan and Parks [18] the proposed method

(c) the magnified mandrill image using (d) the magnified mandrill image using
the method in Muresan and Parks [18] the proposed method

Figure 7: Magnifying the Barbara and the mandrill images in Figure 6 by a factor of four. (a) and (c) are the results obtained
using the method proposed by Muresan and Parks [18], (b) and (d) are the results obtained using our method.



(a) the input image

(b) the magnified image

Figure 8: Magnifying a flower image eight times.


