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The degree of realism of the shaded image of a three-dimensional scene depends on the successful 
simulation of shading effects. The shading model has two main ingredients, properties of the surface 
and properties of the illumination falling on it. Most previous work has concentrated on the former 
rather than the latter. 

This paper presents an improved version for generating scenes illuminated by point and linear 
light sources. The procedure can include intensity distributions for point light sources and output 
both umbrae and penumbrae for linear light sources, assuming the environment is composed of 
convex polyhedra. This paper generalizes Crow’s procedure for computing shadows by using shadow 
volumes to compute the shading of umbrae and penumbrae. Using shadow volumes caused by the 
end points of the linear source results in an easy determination of the regions of penumbrae and 
umbrae on the face prior to shading calculation. 

This paper also discusses a method for displaying illuminance distribution on a shaded image by 
using colored isolux contours. 

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and 
Realism-color, shading, shadowing, and texture 

General Terms: Algorithms 

Additional Key Words and Phrases: Lighting simulation, luminous intensity distribution 

1. INTRODUCTION 

In order to display three-dimensional objects that look more realistic, researchers 
have developed techniques for simulating the properties of objects such as 
reflection, refraction, and transparency [8, 11, 141. The light sources used in 
those techniques, however, have been limited to parallel light sources or point 
light sources. 

In order to correctly describe the effects of real light sources, the spatial 
distribution of luminous intensity varying with direction and geometry of sources 
must be considered [12, 131. In most previous works, however, all rays from a 
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point source were handled as uniform-intense, although the spatial distribution 
of the emittance usually varied with direction, In practical cases, the luminous 
intensity distribution is indispensable, especially for point sources to simulate 
the illumination of an environment. As for the geometry of the light sources, 
handling only parallel light sources and point light sources is insufficient because 
we have linear light sources, and area or volume light sources [lo]. These types 
of sources create umbrae and penumbrae. 

Shadows provide effective information concerning positional relationships 
between many objects and give the observer accurate comprehension of complex 
spatial environments. However, most previous algorithms have handled only 
umbrae. A method of fading the boundaries of shadows by means of dithering 
has been presented, but it is just an approximation [15]. Atherton et al. and 
Whitted have respectively pointed out the necessity of finding an algorithm 
which displays umbrae and penumbrae [2] and of handling distributed light 
sources [ 141. Verbeck [ 121 recently presented methods for simulating the distrib- 
uted light sources by using ray tracing and Brotman [4] presented methods by 
using depth buffer algorithms. In these methods, light sources are assumed as 
sets of point sources. 

This paper proposes methods for displaying three-dimensional objects that are 
illuminated by point sources with luminous intensity distribution or by perfectly 
diffusing linear sources (Lambertian (cosine) distribution). We also present a 
display method of isolux contours depicted by color belts which are superimposed 
on a perspective image. By using this depiction, we can easily grasp the illumi- 
nance distributions. 

The algorithms described in this paper apply to objects composed of convex 
polyhedra and the method of hidden surface removal is fundamentally based on 
[9] (see Appendix Al). 

2. FUNDAMENTAL IDEA OF SHADOW PROCESSING 

The algorithms developed so far for parallel light sources or point sources fall 
into three categories: 

(1) The removal of hidden surfaces and the detection of shadow boundaries are 
executed on each scan line when an image is produced [l, 31. 

(2) The shadowed areas on each polygon are detected prior to removal of hidden 
surfaces [Z, 9l.l 

(3) Every volume of space swept out by the shadow of each object is obtained 
before removing hidden surfaces [6]. 

In this paper, the authors employ the second algorithm extended to treat point 
light sources with luminous intensity distribution. This algorithm uses the 
overlap test in the hidden surface algorithm (see Appendix 1) twice, once for the 
light source and once for the viewpoint. The algorithm detects shadow boundaries 
on a perspective plane observed from the light source (specified only by a direction 

’ The basic idea of [9] is introduced in [Z]. 
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for a parallel light source). For parallel sources and point sources existing outside 
the field of view, a suitable perspective plane can be determined. However, for 
point sources existing within the field of view, all vertices of objects can not 
always be projected onto the perspective plane. In this case, a procedure in object 
space is necessary. We propose a shadow detection method which operates on 
the perspective plane or on the object space as required (see Section 3.2). 

None of the three algorithms mentioned above can be applied directly to 
shadow detection for linear light sources. Thus we are introducing the idea of 
detecting the shadowed areas for linear light sources prior to removal of hidden 
surfaces in the second algorithm and the concept of shadow volumes for linear 
light sources in the third algorithm. The proposed algorithm is executed by the 
following three steps. First, the volumes of umbrae and penumbrae are calculated. 
Second, the umbra and penumbra areas on each face are calculated by using the 
shadow volumes. Finally, the intensity of the faces is calculated on each scan 
line when the hidden surfaces are removed. The shading calculations are simpli- 
fied by the prior detection of the shadow boundaries, at the expense of some 
additional storage. 

3. POINT SOURCES WITH LUMINOUS INTENSITY DISTRIBUTION 

3.1 Regions Needed for Shadow Detection and Luminous 
Intensity Distribution Curve 

The distribution of the emittance of a point source varies with direction. In this 
paper, we limit our discussion to point sources having rotationally symmetric 
intensity distribution characteristics. In this case, the luminous intensity distri- 
bution is expressed by a curve as shown in Figure 1; it is called the luminous 
intensity distribution curve in illuminating engineering. The curve represents 
the variation of luminous intensity of a lamp on a plane including the light center 
and the illumination axis. 

The intensity levels of display devices are finite. In some cases, the illuminance 
on the faces is very low because the illuminance decreases as the square of the 
distance from the light source. In addition, the reflector of a lamp often restricts 
the illuminating space of the light source. These facts suggest that some faces 
far from the source can be omitted from the shadow detection. As shown by a 
dotted line in Figure 2a and b, the size of shadow detection volume is proportional 
to the luminous intensity distribution curve. For simplicity of shadow detection, 
we use a partial sphere of lighting shown by the dot-dash lines in this figure. The 
partial spheres are defined as the part of a sphere bounding a space where the 
illuminance can not be neglected. In Figure 2a, 0, shows the beam spread and r, 
is the attainable distance of the light which depends on the maximum luminous 
intensity and the intensity levels (e.g., 8 bits) of the display device. That is, since 
the display intensity resolution is only 8 bits, at a certain distance from the light 
source, the effect of the lighting is insignificant (less than l/256 of the maximum 
intensity). When Of is larger than ninety degrees (see Figure 2b) two spheres are 
required, upper and lower, with radii r, and r,, respectively, because in many 
cases the luminous intensity distribution characteristics are very different. The 
partial spheres of lighting are used only to reduce shadow detection computations 
(see Section 3.2). 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 
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Fig. 1. Luminous intensity distribution 
curve (used for the street lamp in Fig. 11~). 

shadow detectio 

1 owcr part i al sphere 
of lighting 

partial sphere 
of lighting 

Fig. 2. Side view of luminous intensity distribution curves and partial spheres of lighting. (a) 1 fl, 1 
5 7~/2. (b) I8/ 1 > 7r/2. 

Actual luminous intensity distributions depend on a very large number of 
factors and are extremely complex. Simplifications can be made, however, that 
produce reasonably pleasing results. Two approximations are used in the images 
produced in this paper: 

(1) Most luminous intensity distributions can be expressed by a function of 
cos0 where 6 is the angle between the illumination axis and the lighting ray. We 
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prepared some typical luminous intensity curves such as I/(O) = I(1 + cosR)/2 (I 
is given as the luminous intensity at 0 = 0”). 

(2) The luminous intensity data are given, for example, every ten degrees, 
(6, = O”, lo”, . . . , 180”). Intervening luminous intensities are calculated by using 
linear interpolation, that is, the intensity I/ (0) of angle 8, where 0, % 0 < 8,+, , is 
expressed by 

where 

t = (0 - ~‘)/@‘,, - 0,) 
= (cod - cos~,)/(cos8,+~ - cod,), 

t is approximated because 0 is obtained as the function of cos13, as mentioned in 
Section 3.3. In order to avoid excessive cosine calculations, two look-up tables, 
cos8, and (cosB,+~ - cos0,)-l, are used. 

3.2 Shadow Detection 
In deciding whether or not one convex polyhedron casts its shadows on another, 
we assume that the viewpoint is at the point source and that the perspective 
plane includes an arbitrary point on the illumination axis (see Qc in Figure 3). 

For a single point light source and convex polyhedra, shadow detection is 
performed for every pair of polyhedra, and each shadow boundary is stored as a 
convex polygon on a face. Then, the shadow areas on the face are obtained by 
the union of the shadows cast on it. This makes easy scanning of shadow 
boundaries because of convex shadows. 

As shown in Figure 3a, when both convex polyhedra can be projected onto the 
perspective plane, shadow boundaries are calculated on the perspective plane by 
using the projected contour lines of the convex polyhedra (see [9]). Otherwise, 
the shadow detection is performed in object space using pyramids of infinite 
height that are formed by the point source and the contour edges of the convex 
polyhedra (see Figure 3b). If the pyramids for two convex polyhedra intersect 
each other, there is a shadow area on the farther polyhedron from the point 
source (in Figure 3b, V,), and the shadow area is the part intersecting with the 
pyramid made from the closer convex polyhedron (in Figure 3b, Vz). This 
computation is easy because the pyramids are convex and always have a common 
vertex, the point source. 

The reduction of shadow tests is significant when there are many objects and 
multiple light sources. Disregarding reflections, the polyhedra requiring shadow 
display are restricted within the field of view, while polyhedra outside the field 
of view can only act to cast their shadows on the polyhedra inside the field of 
view. By using the field of view and the partial sphere of lighting, the number of 
combinations for the shadow detection is reduced from no(nO - 1)/2 (i.e., no&) 
to nJn,, - 1)/2 + n,,.n,, where no is the total number of convex polyhedra, n, 
the number of the polyhedra within the field of view and the partial sphere of 
lighting, and n, the number of polyhedra existing outside the field of view but 
within the partial sphere of lighting. 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 
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Fig. 4. Illuminance calculation for a point light source. 

3.3 Shading 

In order to save computation time, we use a technique similar to Gouraud shading 
[ 71. The calculation of illuminance on faces along each scan is executed not only 
at the boundaries of the faces such as Gouraud shading but also at the boundaries 
of shadows and at regular intervals (three or five pixel intervals are used in this 
paper). The illuminance of pixels within each interval is computed by linear 
interpolation. 

The illuminance, E,, from a light source at P/, at an arbitrary point P on a 
face St is expressed by 

where r is the distance between P/ and P, (Y is the angle between the normal of 
a face S, and the light ray from the source, and B is the angle between the 
illumination axis and the light ray from Pf to P (see Figure 4). 

Let F( S, Q) be the perpendicular distance between the plane of polygon S and 
a point Q. Let the coefficients of the plane of S be (a, b, c, d) where (a, b, c) are 
the coefficients of the unit outward pointing normal to the plane of S and let Q 
= (X, Y, 2). Then 

F(S,Q)=aX+bY+cZ+d. 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 
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By using eq. (3), cosa is easily obtained as follows: 

cos a = m/, PP) 
r ’ 

then eq. (2) is expressed by 

E 
P 

= L(e) JYSf, P/l 
r3 ’ (4) 

I,(e) in eq. (4) is easily calculated by using the plane S, that is perpendicular to 
the illumination axis and includes P/ (see Figure 4), because the luminous 
intensity of a point source is expressed by a function of co&; that is 

case = F(St., P) 
r ’ 

4. LINEAR SOURCES 

The shape of a linear light source discussed in this section is assumed to be a 
line segment, and the luminous characteristics are Lambertian distribution and 
uniform brightness. 

In this section, we discuss the shadow detection of penumbrae and umbrae and 
the shading calculation for the linear source. 

4.1 Shadow Detection 

4.1.1 Penumbra and Umbra Volumes for Shadow Detection. The shadows caused 
by a linear source consist of umbrae and penumbrae as mentioned before. Because 
objects are treated as sets of convex polyhedra, it is easy to determine the shadow 
volumes for shadow detection. 

As shown in Figure 5, let us assume an arbitrary face S, exists farther from a 
light source than a convex polyhedron V. We define the contour lines Ci and Cp, 
where C1 is the silhouette contour of V when vie.wed from an end point Q1 of the 
source and C2 is the silhouette contour made by Qz. When these two contour 
lines are projected onto face S,, the intersection of the polygonal area, as defined 
by the projected contour lines Cl and Cl, makes an umbra area (as shown by a 
cross-hatching in Figure 5). The minimum convex polygon surrounding Ci and 
Ci forms a penumbra area (as shown by a hatching and dotting in Figure 5). 

Note that the penumbra should not be described as the union of the areas 
defined by C; and Ci, but the convex hull of those areas. In the dotted regions 
of Figure 5, although both Q1 and Q2 are visible, a part of the segment is 
interrupted by the polyhedron. 

Expanding this idea to a three-dimensional space, consider the shadow volumes 
U/(/ = 1, 2) which are formed by using the convex polyhedron V and Q/(/ = 1, 
2). The volume U,(! = 1, 2) is the open space surrounded by the following two 
types of planes: the planes consisting of the end point Q/ and all pairs of adjacent 
vertices of C/; and the planes of all faces of the polyhedron visible from Q/. A 
penumbra volume is defined as the minimum convex volume surrounding U, and 
Uz, and an umbra volume is defined as the intersection of U, and U2. 

As shown in Figure 5 and Figure 6, there are two cases concerning the 
relationship between each pair of shadow volumes for a linear light source. That 
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is, U, and U, intersect each other (Case A) or one of U,(/ = 1, 2) encloses the 
other one (Case B). The determining method of the penumbra and umbra volumes 
for Case A and Case B is described in Appendix 2. 

Shadow detection is performed by using the relationships between the shadow 
volumes and each of the faces. This procedure is discussed in the following 
section. 

4.1.2 Shadow Detection on a Face. Faces that are totally invisible from both 
end points of the linear source lie completely in the umbra and need not have 
further shadow detection performed. Faces that are visible from either end point 
of the linear light source are handled as described below. 

The penumbra volume always includes the umbra volume. If the penumbra 
volume of the polyhedron V and the face S, do not intersect, there is no shadow 
cast on S,. Otherwise, the penumbra and umbra boundaries are obtained by 
projecting the contour lines C/(/ = 1, 2) onto S, from Q/. The penumbra and 
umbra boundaries are basically stored as loops on the face. We call the loops for 
penumbra and umbra, a penumbra loop and an umbra loop. We assume that 
contour lines C, (/ = 1,2), are defined in a clockwise direction when viewed from 
Q/. Then, the penumbra and umbra loops are determined by the following 
method. In Case A, let two common vertices of Ci and Cz be PL and PR (see the 
definition of PL and PR in Appendix A2; PL = P4 and PR = Pa in Figure 5). Ci 
and C.$ are divided into two separate strings by using PL and PR, respectively (in 
Figure 5, the separated strings are [P;,4, P;,l, Pi,*], [P;J, P;J, P;J, [P~J, P&, 
Pi,J, and [P&, P;,,, P;,5, P&, P&l). The penumbra loop is obtained by con- 
necting two strings existing on the surfaces of the penumbra volume (in Figure 
5, w,4, l-y,, p;,z, Pi,29 P&3, P&l). The umbra loop is obtained by connecting 
the other two strings. The umbra loop, however, twists (in Figure 5, [P;,2, Pi,a, 
P;,4, P.&, Pi,, , P4,5, P;,6, P&l). In this case, the actual umbra area is surrounded 
by the loop segments in a clockwise direction. Note that the areas surrounded in 
a counter clockwise direction are part of the penumbra, as shown by dotted areas 
in Figure 5. In Case B, one of the projected contour lines is the penumbra loop, 
and the other one is the umbra loop. The obtained shadow loops are transformed 
to the coordinate system of the image space and are stored. 

If some edges of the side surfaces of the penumbra volume have no intersection 
with the plane of the face S,, the polyhedron V should be stored for the other 
process described in 4.2.2 because the penumbra loop can not be obtained. 

4.2 Shading 

Faces that are totally invisible from both end points of the linear source need 
not have further shading calculations (& in Figure 7). Shading calculation is 
necessary for faces that are visible from either end point of the linear source ( S1 
and S3 in Figure 7). When the plane including a face intersects with the linear 
source, the face receives light from part of the linear source ( S3 in Figure 7). In 
this case, the linear source is divided into two parts with the plane. The portion 
of the visible side of this face is treated as a new light source because the light 
from the remaining portion is interrupted by the face itself. 
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42 

Fig. 7. Classification of faces for shading. 

4.2.1 Illuminance Calculation of Unshadowed Portion. The method of calculat- 
ing illuminance at an arbitrary unshadowed point P on the face S, is described 
here. In Figure 8a, let L be the length of a linear source, Q an arbitrary point on 
the linear source, p the angle between the vector PQ and the normal Nf of S,, fI 
the angle between the vector PQ and the linear source, /’ the distance between 
Q1 and Q, and r the distance between P and Q. When the luminous intensity per 
unit length of the source is expressed by I, the luminous intensity of the direction 
of angle 0 is I sin 0 because of Lambertian distribution. Thus the illuminance E 
at P from a linear source is expressed by 

E=I 
s 

L sin 8 
- cos p de. 

0 r2 

The calculation of the illuminance is divided into the following three cases for 
shortening the computation time. Let T be the unit vector of the direction of 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 
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ZA 

(4 

Fig. 8. Illuminance calculation for a linear light source. 

linear source Q1 Qz, S, the plane including P and perpendicular to T, Q/ the 
intersection of S, and the line including Q1 and Q2, and rl, r2, and r, the distances 
PQ, , PQ2 and P&, respectively, as shown in Figure Sb. 

Case A: The linear source is parallel to S,. In this case 0 is equal to (7r - p). 
The normal illuminance E, (i.e., the illuminance of direction PQ() can be obtained 
by substituting (r - p) for 0 in eq. (5). Then the illuminance E can be obtained 
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as E,ccos 6 where 6 is the angle between P& and the normal of S,. When Q1 and 
Q2 lie on the same side of S,, E is given by 

E = (0.51/r,) I (Y~ + sin cyl cos CY~ - (an + sin o2 cos az) ] cos 6. (6) 

If Qi and Qz exist on the opposite sides of S,, respectively, E is given by changing 
the sign of CY~ or CY~ in eq. (6), where (Y~ and a2 are the angles between PQ, and 
PQ,, and P& and PQ2, respectively. Let u&’ = 1, 2) be defined as tan (Y/ in 
Figure 8b, then uY = F(S,, Q/)/l;. F(S,, Q/) is obtained by the inner product of 
vectors, (Qp - P) . T, because S, includes P and the normal of S, is T. The terms 
LU,- + sin wcos CU/(! = 1,2) can be expressed by the functions of up, and cos 6 by 
F(Sf, Ql)/rt. Thus, the illuminance E at P is given by 

E = II e,(w) - en&) I 
F(St, QJ 

2 9 rl (7) 

where e, (i.e., 0.5(ap + sin (Y/COS are)) is formally defined as: 

e,(u) = 0.5 ( U 
tan-‘u + ~ 

) 1+u2 * 

In the numerical evaluation of e,,(u), we want to insure some minimal error, 
such as, less than 1 percent. For small values of u( ] u ] < 0.44), the error can be 
most easily kept in bounds by using the following polynominal approximation: 

e,(u) = u(1 - 2/3 u2 + 3/5 u4 - 7/4 u6). 

Case B: The linear source is perpendicular to S,. In this case p = 0, sin 0 = 
r//r and & = set 8 dr (see Figure 8c), then eq. (5) is expressed as 

s 

‘2 

E=I r,/r” dr = I(rY2 - rg2) ; G-2 > rd. 
r1 

Since r2 need not be greater than rl, the illuminance E is actually given as the 
absolute value of the above equation. That is 

E = 0.5 I I rT2 - rF2 I r,. (8) 

Case C: The cases excluding A and B. By transforming the world coordinates 
so that the linear source coincides with the x axis and the yz plane includes the 
point P, it is possible to simplify the numerical integration in eq. (5) (see Figure 
8d). The computation time is reduced by giving the increment of numerical 
integration Ax as a function of min(ri, r2)/L, because the farther point P is from 
the source, the larger Ax. 

It is worth saving computing time in the first two cases (A and B), because 
fluorescent lamps on a ceiling are usually perpendicular or parallel to the walls 
and a floor. 

In order to support specular reflection, it is necessary to adapt the Phong 
model [ll] which was developed only for point sources. In our system, the 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 
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numerical integration method such as Case C can be available for the polyhedra 
having specular reflection characteristics because the numerical integration can 
be handled as a series of point sources. 

4.2.2 Searching for the Shadowed Sections. On every scan line, a search for 
shadowed sections is made. Multiple polyhedra generally cast shadows on a face 
S,, but for simplicity of explanation the shadow cast by a single polyhedron is 
described. 

As an umbra always exists inside a penumbra, the intersection of the penumbra 
area and a scan line is searched for first. It is easy to test for this intersection 
because each penumbra loop (see Section 4.1.2) always forms a convex polygon 
in a clockwise direction. After the search for the penumbra, the search for the 
umbra area is executed. The umbra loop, however, is not always a convex polygon 
and the umbra area consists of only those areas surrounded in a clockwise 
direction by the umbra loop as mentioned in Section 4.1.2. As shown in Figure 
9a, the umbra is a region surrounded by the edges of the umbra loop (except the 
edges common with the penumbra loop). Let the intersection points of the 
penumbra loop and the scan line be PpJ and Pp,,. Because the umbra area is 
always convex, the umbra on the scan line is obtained by cutting the segment 
Pp,iPp,r with the edges surrounding the umbra and crossing the scan line. In 
Figure 9a, the umbra on the scan line, the segment Pu,/Pu,r, is determined by 
clipping the segment P,,P,,, with the edges, PIP2, P2P3, P3P4, P5Ps, and P,P,. 

On the other hand, if there are some edges of side surfaces of a penumbra 
volume having no intersection with the plane of the face S,, the shadowed areas 
have not been obtained as mentioned in Section 4.1.2. In this case, the following 
process in object space is required. First, the segment which is the common part 
of the face S, and the scan plane formed by the viewpoint as well as a scan line 
(in Figure 9b, segment P,,,P,,,) is obtained. The second step is executed by 
expanding the algorithm used in the image space mentioned above. That is, the 
polygons of the penumbra volume or umbra volume are used instead of the edges 
of the penumbra loop or the umbra loop in image space, respectively. The 
penumbra and umbra on the scan plane are obtained by clipping the segment 
PpPf,, with those polygons. For simplicity, Figure 9b shows only a penumbra on 
the scan plane (the penumbra segment Pp,ePp,,). Finally the segments of the 
penumbra and umbra are projected onto the perspective plane. 

4.2.3 Illuminance Calculation in Penumbra Areas. A penumbra area is the 
region in which the light from the source is partially interrupted by several 
polyhedra. Therefore, the illuminance at an arbitrary point P in the penumbra 
is calculated by obtaining the visible parts of the linear source from P. These 
visible parts act as the new sources to P. 

Quantitative invisibility [ 11, used for hidden line elimination, is available for 
determining the visible segments of the linear source, where the quantitative 
invisibility of a point on the linear source is defined as the number of front faces 
that lie between the point and the viewpoint (the calculation point P is assumed 
as the viewpoint). The segments whose quantitative invisibility equals zero are 
visible. In order to obtain the quantitative invisibility, all convex polyhedra 
casting shadows on point P are searched, and the contour lines of these polyhedra 
observed from P are obtained. When these contour lines and the linear source 

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 



138 l T. Nishita, I. Okamura, and E. Nakamae 

penumbra loop 

umbra loop 

ine 

penumbra volume 

Fig. 9. Shadow on a scan line. (a) Shadow detection on image space. (b) Shadow detection on object 
space. 

are viewed from P, the intersections between them are calculated because the 
quantitative invisibility on the linear source changes only at these intersections; 
the calculation is executed in the object space by using the linear source and the 
pyramids consisting of the contour lines and P. 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 
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V 'contour line of polyhedron 

Fig. 10. A linear source viewed from calculation point for shading. (linear source 
Q,Qg is partially hidden by polyhedra VI, V, and V,). 

Figure 10 shows a linear source viewed from the calculation point P (in Figure 
10, each number in the parenthesis shows the quantitative invisibility). 

5. DISPLAY OF ISOLUX CONTOURS 

The halftone representations presented in this paper are realistic, but they do 
not depict the value of illuminance. This problem can be solved by displaying 
isolux contours on the shaded image. Superimposing the color spectrum on a 
shaded image is effective for grasping the numerical results. This method, as first 
pointed out by Christiansen [5], has been applied to display pressure, tempera- 
ture, and so on. 

A display method which superimposes the color belts of isolux contours on a 
shaded image is used here. These color belts and the perspective image are 
alternated, allowing observers to see the illuminance values easily and the 
perspective image in the same picture. The color of the isolux belt varies in 
proportion to the illuminance value. In this paper, the maximum value is assigned 
to red. 

The representation proposed here offers a useful tool to illumination engineers 
and architects, even though the consideration of indirect illuminance components 
is neglected. 

6. EXAMPLES 

The examples for point sources with luminous intensity curves are shown in 
Figure 11 (a)-(f); (b), (d), and (f) depict the illuminance distributions of (a), (c) 
and (e), respectively. Pictures (a) and (b), are for interior lighting. The light’s 
position coincides with the origin of the luminous intensity curve. Pictures (c) 
and (d), show outdoor lighting; the color of the lamps located at the front door, 
the side gate, and the street lamps are simulated by a fluorescent lamp, an 
incandescent lamp, and mercury arc lamps, respectively. The windows’ lights are 
only simulated as colored windows. 

Pictures (e) and (f), are depicted for comparison with the linear source, (g) 
and (h). The effect of penumbrae is very realistic. 
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7. CONCLUSIONS 

This paper has proposed two methods; one for shaded representation of three- 
dimensional objects illuminated by point sources with axi-symmetric luminous 
intensity distribution and the other for linear light sources with Lambertian 
luminous intensity distribution. 

The following conclusions can be stated from the results obtained. 

(1) The illuminance for point sources and linear sources is calculated precisely, 
and the reality of shaded representation is much improved. The procedure can 
be applied to lighting designs. 

(2) The introduction of the partial sphere of lighting decreases the number of 
objects needed for shadow detection. 

(3) Three-dimensional objects composed of a set of convex polyhedra simplify 
the determination of the volumes of penumbrae and umbrae needed for shadow 
detection. 

(4) The illuminance calculation becomes simple because searching for the areas 
of penumbrae and umbrae on each face is done before scanning for hidden surface 
removal. 

(5) Designers can easily grasp the global illuminance distribution by combining 
isolux color belts with the perspective image. 

Appendix 

Al. Hidden Surface Removal 

The outline of the procedure is as follows: 

(i) Project the vertices of polyhedra onto the perspective plane, and extract the 
front faces of polyhedra. 

(ii) Calculate the priority of visibility for the overlapped polyhedra on the 
perspective plane. The overlap test is executed by means of the projected 
contour lines of convex polyhedra and the depth at the intersecting point in 
each contour is used to determine the priority. 

(iii) Scan the perspective plane from top to bottom. Hidden surface removal on 
each scan line is executed by using a technique similar to the painter’s 
algorithm [8]. 

A2. Determining Penumbra and Umbra Volumes 

Let’s assume that the vertices PR(k = 1, 2, . . . , n) of a convex polyhedron V(n 
is the number of vertices of V), the contour lines Cf[Pp,l, . . , , Pp+, Pf,,+, . . . 
P/,,] viewed from the end points of a linear source Q/(! = 1, 2), where np is the 
number of the vertices of the contour line, and the faces s/,i consisting of [Qr, 
Q2, P,,,] where the symbol [ ] means the ordererd strings of vertices. 

(1) Case A: This case occurs when both a vertex P/,i satisfying the eq. (9) and 
a vertex P/,, satisfying the eq. (10) exist. 

F&i, P/,1--1) 2 0, F(S/,i, PP,i+1) 2 0, (9) 
F(&,, , P/,,-1) 5 0, F($,, P/,,+A 5 0, (10) 

where /’ is 1 or 2, and eq. (9) (or (10)) means that all vertices of V lie on the 
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same half-space of the plane of ,!?F,i(~r s,,). We define the vertex satisfying the 
eq. (9) as PL and the vertex satisfying the eq. (10) as PR; PL and PR must be 
common vertices of C1 and C2 (in Figure 5, Ci is [PI, Pz, Ps, Pd], Cz is [PI, P5, 
Ps, Pp, P3, P4], PL is Pa, and PR is Pd. However, if the line segment Qi Qz and 
the contour edges of V exist on the same plane, there are multiple vertices 
satisfying eq. (9) and (10). In this case, two arbitrary vertices are selected for PL 
and PR. 

Using PL, PR, C1 and Cz mentioned above, the penumbra and umbra volumes 
are defined as below. 

The penumbra volume is the space surrounded by the following four types of 
planes: 

(i) The planes including Qi, and the adjacent vertices Pl,i and Pl++l which are 
the elements of contour lines Ci and are counted in a clockwise direction from 
PL to PR (in Figure 5, [Q1, P4, PI] and [Qi, PI, Pz] because PL = P4 and PR = Pz 
as mentioned above). 

(ii) The planes including Qz, and the adjacent vertices P2,, and Pz,,+l which 
are the elements of Cz and are counted in a clockwise direction from PR to PI, (in 
Figure 5, I&Z, Pz, &I and [Q2, Ps, Pd. 

(iii) Two planes including the vertices [Q2, Qi, PL] and [Qi, Qz, PR] (in Figure 
5, [Qz, QI, PA and [&I, Qz, P21). 

(iv) The faces of V which are completely visible from the light source. 

The umbra volume is surrounded by the following three types of planes; 

(i) The planes including Qi, and the adjacent vertices PI, and P1,+1 which are 
the elements of C1 and are counted in a clockwise direction with respect to the 
light source from PR to PL (in Figure 5, [Qi, Pz, P3] and [Qi, P3, PJ). 

(ii) The planes including Q2, and the adjacent vertices P2,, and P2,,+, which 
are the elements of Ce and are counted in a clockwise direction from PL to PR (in 
Figure 5, [QT, P4, PII, [Qz, PI, &A [Q2, h, Pd and [Qz, PG, PzI). 

(iii) The faces of V which are visible from either one of the end points of a 
linear source. 

(2) Case B: If Q2 exists within the pyramid formed by Q1 and C1, the penumbra 
and umbra volumes are U2 and U,, respectively. If not, the penumbra and umbra 
volumes are Ui and U,, respectively (in Figure 6, the penumbra volume is Ui). 

In Case B, the projected contour lines, Cl and C6, never intersect each other, 
as shown in Figure 6. 
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