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Abstract
Displaying objects with high accuracy is important in CAGD and for the
synthesis of photo-realistic images.  The representation of free-form surfaces
can be classified into two: parametric surfaces such as Bezier  patches, and
implicit surfaces like metaballs. We discuss display methods for both Bezier
patches and metaballs by using Bezier Clipping. Traditionally, polygonal
approximation methods have been employed to display parametric surfaces.
This paper introduces various display methods for Bezier patches without
polygonal approximation.  Bezier Clipping can be also applied to the
following: 1) curve/curve intersection, 2) curve/surface intersection, 3) scan
conversion of curved regions such as outline fonts, 4) various lighting
simulations such as curved light sources and radiosity method.  In order to
show the effectiveness of Bezier Clipping widely by using the Internet, we have
coded some of them(e.,g.,curve/curve intersection, metaballs) in Java language.
The Bezier Clipping is very effective for displaying  metaballs and metacircles
(2D version of metaballs) and for the application of metaballs, we demonstrate
realistic rendering of clouds, snow, smoke, and water droplets.

1. Introduction
  
Effective rendering methods for curved surfaces are discussed here. The
representation of free-form surfaces can be classified into two categories:
parametric surfaces and implicit surfaces.  For the former, Bezier patches, B-
spline patches, and NURBS are used. For the latter, algebraic surfaces and a
set of density functions such as metaballs (or blobs) are used. This paper
discusses the idea of Bezier clipping and its application to various rendering
techniques.  In order to show the effectiveness of Bezier Clipping widely by
using the Internet, we have coded some of them in Java language.
   Bezier clipping can be applied to hidden line/surface removal of Bezier
patches.  Bezier clipping can be also applied to raytracing of metaballs. The
Bezier clipping technique can be applied not only to hidden line/surface
removal but also to various shading effects.

2. Basic Idea of Bezier Clipping

Bezier clipping is an iterative method which takes advantages of the convex
hull property of Bezier curves, and iteratively clips away regions of the curve
which don’t intersect the line. Thus we can refer to this method as an interval
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Newton method.  Bezier clipping converges more robustly with the
polynomial's solution than does Newton's method. This method was first
developed for raytracing Bezier patches[Nishi90].
   The advantages of this technique are as follows:

(1) Applicable to a high order of polynomial (and rational functions)
(2) Robust
(3) No initial guess necessary
(4) All solutions within specified range
(5) Minimum/maximum root available if necessary
(6) Quick test for non-intersection

       (7) High-degree Bezier function/curves solved by iterations using only
linear equations (i.e., Bezier clipping uses only linear equations in each
iteration).

   The Newton method is often used for numerical analysis, but it requires a
suitable initial guess, and it is difficult to be sure of finding all solutions.
Bezier clipping overcomes these problems.
   
 2.1  Applications of Bezier Clipping
The following are applications of Bezier clipping.

(1) Root finder for polynomials
(2) Basic geometric problems: curve/curve intersection[Seder90], curve

/surface or surface/surface intersection[Seder91]
(3) Hidden surface removal for parametric surfaces: raytracing[Nishi90],

scanline algorithm[Nishi91a], hidden line algorithm[Nishi92b]
(4) Hidden surface removal for metaballs[Nishi94a]
(5) Shading models: cylindrical light sources[Nishi92a], curved light sources

and radiosity[Nishi94b], optical effects on curved surfaces such as
caustics[Nishi94b] or water drops[Kaneda96], natural phenomena such
as clouds[Nishi96]

(6) 2-D computer graphics: scan conversion of curved regions, outline fonts
[Nishi91b], brush strokes, watercolor painting[Nishi93a], morphing
[Nishi93b], and metacircles( 2D version of metaballs).

   As described above, Bezier clipping can be applied to many fields.  This
paper will focus on 3-D rendering, the details of (5) and (6) are omitted.

2.2 Solving to Polynomials
Polynomials can be converted to a Bezier curve.  For example, a degree three
polynomial can be converted to the cubic Bezier function.  Fig. 1(a) shows the
polynomial (f(x) = 24x3-42x2+2x+2) converted to the following a cubic Bezier
function;
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Fig.1 Solving to polynomial by Bezier clipping
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where (k/3,fk) (k=0,..,3) are control points of the Bezier function, and Bk
3   is the

Bernstein function. The shaded region is the convex hull of the curve. The root
of the curve always exists within the intersection between the axis and the
convex hull; that is, the interval tmin and tmax. By clipping the curve at tmin and
tmax, we can get a new curve with thinner convex hull as shown in Fig. 1(b). As
the remaining part of the curve approaches a straight line, the intersection
interval between the convex hull and the t axis rapidly narrows at the next
step.  By repeating this process we can find the root.
   Iteration terminates when the intersection interval between the convex hull
and the t axis is smaller than the given tolerance.  In the first step, in the
example of Fig. 1, the interval is 0.55, but in the third iteration, the interval is
only 0.0003.  After three iterations we can find the intersection point.
   If the intersection between the convex hull and the axis is relatively large,
there is a possibility of multiple roots.  In that case, the curve is subdivided at
the mid point into two curves.  And Bezier clipping can then be applied to
each curve.
 Fig.2 shows the Java Applet for solving to polynominal (degree 6 in this case).
We can show how effective the Bezier clipping method is for interactive
systems through the Internet.  In this applet, we can hear the word “get”
when the roots are found. This sound help us make an attractive system.

  2.3 Curve-Line Intersection
Fig.2 shows a line and a cubic Bezier curve. The Bezier curve with control
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points Pk(xk,yk) is expressed by the following equation.
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And the distance from any point (x,y) to the line is expressed by

                   d x y ax by c( , ) = + +                (3)

   By substituting x and y of the curve equation to the line equation, we can
get the following Bezier function.
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where fk is equivalent to the distance between the control point Pk and the line.
Equation (4) is called distance function. (a,b) is the unit normal of line
(a2+b2=1). Fig.1(a) shows the distance function expressed by the Bezier
function.  Parameter t at the intersection with the t-axis gives us the
intersection between the line and the curve.  Bezier clipping solves this
intersection.
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f1 f2

f3

f0

Fig.2 Java Applet for root finder of polynominal     Fig. 3: Curve/line intersection.

2.4  Curve-Curve Intersection
For curve/curve intersection test, we can introduce the idea of FatLine, which
is a bounding box of the curve[Seder90].  Let’s consider curve P and curve Q
shown in Fig. 3. Curve Q is clipped with the FatLine of curve P.  This gives us
the small curve of P. Curve P can be clipped with the FatLine of curve P.  By
repeating this process, we can find the intersection point.  See reference
[Nishi92] for details.
   Fig.5 shows the Java Applet for curve/curve intersection (degree 3 and 6
Bezier curves); three intersection points in this case.
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Fig.4 Curve/curve intersection test by using Fatline.

Fig.5  Java Applet for curve/curve intersection.

3. Display of Bezier Patches

In this section, we discuss a hidden surface removal method for Bezier patches.
  Let’s consider previous work on hidden surface removal of parametric
surfaces. Solutions to the ray/patch intersection problem can be categorized as
being based on subdivision or numerical techniques.  Whitted[Whitt80] first
developed the subdivision method. Kajiya’s algorithm[Kajiya82] reduces the
problem of intersecting a bicubic patch with a ray into one of finding the real
root of a degree 18 polynomial. Our method[Nishi90] belongs to the subdivision
method. After our paper was published, Fournier[Fourn94] used Chevyshev
basis functions to speed up the ray/patch intersection test. The properties of
Chevyshev polynomials result in the computation of better and tighter
enclosing boxes. Kim[Kim95] has expanded our method. He reduced the
amount of computation as much as possible by trying to find only the nearest
point instead of computing them all. He built a BSP tree for each original patch
in the preprocessing stage by doing adaptive subdivision over the surface. This
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binary tree allows us to find which part of the subdivided patch is likely to
contain the nearest intersection from the viewpoint.
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Fig.6 Ray/surface intersection.

   Raytracing means to find (u,v) parameters from (x,y) coordinates on the
screen. The viewing ray is the line intersecting two planes. After transforming
the Bezier patch to be ray passing through the origin, the two planes become
the lines, Lu and Lv (see Fig. 6(a)), passing through the ray (i.e., origin); the line
equation passing through the origin is expressed by

                            L x y a x b yu u u( , ) = + .                         (5)

The projected cubic Bezier patch is expressed by
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where x X Zij ij ij= / , y Y Zij ij ij= /  , w W Zij ij ij= / ,  and (xij,yij) is the projected control point

of Pij(Xij,Yij,Zij); Wij is weight for the control point.
   By substituting x and y equations in the line equation, we get the following
equation.

                        d u v d B u B vu
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d a x b yij u ij u ij
= + .

Fig.6(a) shows the control point distances dij (dij for each control point is
displayed in the figure). The function d can be represented as an explicit
surface patch whose control points (uij, vij, dij); uij=i/3, vij=j/3.  Even though d
is function of (u,v), Figure 6(b) is a side view of the d(u,v) patch, the convex hull
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of the projected control points bounds the projection of  the d patch. We can
find the range having intersections (see [umin, umax] in Fig. 6(b)) by this figure.
This process of identifying values umin and umax which bound the solution set,
and then subdividing off the regions u<umin and u > umax. In a similar  manner,
we define the process of Bezier clipping in parameter v. Our ray-patch
intersection algorithm consists of alternately performing Bezier clipping in u
and v.  By repeating this process, we can get the small patch which is the
intersection point.

Fig.7 shows examples of Bezier patches.  (a) is raytracing, (b) is an example
of radiosity using scanline algorithm [Nishi93d].

         
             (a) raytracing                  (b) scanline algorithm with radiosity

Fig.7 Examples of Bezier patches

4. Displaying Metaballs

The features of metaballs are as follows: (1) the required data for metaballs is
typically at least two to three orders of magnitude smaller than that modeled
with polygons,  (2) metaballs are suitable for use in the CSG model, (3) they
are suitable for the representation of deformable objects, making them useful
for animation. (4) they are well suited for modeling of human bodies, animals,
organic models, and liquids.  Because of such a usefulness, many commercial
software packages implement metaball modeling techniques. The metaball
technique has become an  indispensable technique in 3-D graphics software.
This modeling technique was first developed by Blinn[Blinn80] who called it
blobs. In Japan, Nishimura et al.[Nishim85] developed it independently, and
called it metaballs.
   
 5.1 Field function
In the metaball technique, a free-form surface is defined as an isosurface
(equi-potential surface) of a field function.  The field value at any point is
defined by distances from the specified points in space.  We used the degree
six field function proposed by Wyvill[Wyvill86].  If two balls are placed at the
same location, it has twice the volume of the isosurface for a single ball. Thus,
for geometric modeling, degree six polynomial function is useful expressed by
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where Ri is the radius of metaball i and r is the distance from a point to the
center Pi(xi, yi, zi).
    For n metaballs, the shape of the curved surface is defined by the points
satisfying the following equation.

                                 f x y z q f Ti
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0                    (9)

where T  is a threshold, qi the density values at the center of metaball i.
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Fig.8  Density distribution on the ray.

 4.2 Intersection Test between Ray and Metaballs
The main task for rendering metaballs is intersection tests between rays and
isosurfaces. In our algorithm[Nishi94a], the field function on the ray is
expressed by Bezier functions, so the root of this function is effectively and
precisely solved by Bezier clipping.
    Let’s discuss the intersection test between a ray and multiple metaballs.
Fig.8  shows a ray and an isosurface defined by two balls and shows the
density distribution on the ray. By using parameter si (0<s<1) on the
intersected interval with ball i (see Fig.8), the density is expressed by
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length/Ri)2 (0 1< <ai ).

        
       Fig.9  Java Applet for metaballs    Fig.10 A cross section of metaballs.

  
             (a)                                       (b)

Fig.11  Java Applet for metaball editor.

  As shown in Fig. 8, Bezier curves, f1 and f2, are clipped by the interval to be
tested (i.e., section B in the figure), then both of the clipped curves are
composited. This composting of the curves is very simple. It is performed by
simply adding each control point dki belonging to f1 and f2; After composting the
curves, the new curve f12 is also expressed by a degree six Bezier curve, then the
root (e.g., Pt in Fig. 8) is found by using Bezier Clipping.
   Fig.9 shows the Java Applet for rendering metaballs. In this applet, we can
add some balls interactively, and can get a cross section of the object by clicking
just three points on it(see Fig.(b)).  Fig.11(a)  shows Java Applet for editing
metaballs. Fig.(b) shows the result of the editing. In this case  balls with
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negative density are used to obtain holes.
  Fig. 12 (a) shows killer whales modeled by metaballs. This is one frame

from a HDTV size animation. This figure shows the optical effects in water
such as caustics on the whales and shafts of light[Nishi94b].
  Fig. 13(a)-(b) show examples of two types of free-form surfaces in the scene.
Fig. 13(a) shows  Bezier surfaces (car and tree) and metaballs (clouds and a
frog). Both types of surfaces can be displayed by a single program. The
metaball technique is also useful for displaying translucent objects such as
clouds/smoke. Clouds are defined by density fields, which are modeled by the
metaball technique. That is, the surface of a cloud is defined by the isosurfaces
of potential fields defined by the metaballs. Multiple scattering is taken into
account for the clouds[Nishi96a]. The intersections of the isosurface (i.e., cloud
surface) with the viewing ray are calculated by raytracing based on Bezier
clipping.  Fig.(b) shows teapot with water droplets; the teapot is modeled by
32 Bezier patches, and water droplets are defined by metaballs.

Fig.12 Examples of metaballs with optical effects within water.

     
(a)                              (b)

Fig.13 Examples of raytraced scenes containing Bezier patches and metaballs

5. Displaying  Metacircles
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Ranjan et al [Ranjan96] used a representation of objects as a union of circles to
define the distance between two objects and to base a method to interpolate
between the two. They used circles because circles can be simplified to obtain
smaller data sets. In their method, however, the boundaries of objects are not
smooth because of C0 continuity due to sets of arcs.  Chung also used circles to
define the images[Chung97]. To overcome this problem, we employed meta-
circles which are a 2-D version of metaballs.  We can get smooth curved
boundaries because of the density field within the circles. Our purpose is to
realize an interactive system using the Internet.

Fig.14 shows the fusion of two metacircles. In order to scan the metacircles,
we need a scanline/iso-curve intersection test. In this case, we can employ the
Bezier clipping method.

Fig.15 shows an example of Chinese calligraphy defined by metacicles.
Fig.16 shows a horse again defined by metacicles.  We can  send the images
by using only a small amount of data, i.e. coordinates of the center and its
density.

P1 P2

              
       Fig.14 Fusion of metacicles      Fig.15 Java Applet for Chinese calligraphy

composed by metacicles

 
(a)  metacircles                    (b) binary image from metacircles

Fig.16 Example of metacircles.

6. Conclusion
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We have introduced  a display system for Bezier surfaces and metaballs using
Bezier Clipping.  The Bezier Clipping is a very powerful solver for geometric
modeling and shading models.  As shown in the examples, the system
described here gives us photo-realistic images.
 The advantages of the methods described here are as follows:
 (1) Both of parametric and implicit surface can be displayed with high
accuracy (i.e., without polygonization).
 (2) Various shading effects for parametric surfaces can be simulated:
cylindrical/curved light sources, radiosity.
 (3) In the systems, parametric patches and metaballs can be displayed by a
single program.
 (4) Because of the effectiveness of Bezier clipping, we can develop an
interactive system through the Internet.

Please refer the following URL for interactive applications of Bezier clipping.
http://www.eml.hiroshima-u.ac.jp/~nis/javaexampl/demoEng.html
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