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Abstract

  A cloth simulation system must generate a human body
model based on measured data obtained from range data. We
propose modeling and deformation methods based on such
data. In our system, the human body is modeled by layered
metaballs which correspond to the horizontal cross section of
the body. For each cross section, metaballs are generated by
measured sample points on the boundary of the cross section.
In order to fit the metaball surface with the sampling points,
we employed the Steepest Descent method. For body
deformation, the sampling points on the cross section are
smoothly moved using Bezier curves.  To show the effectiveness
of the proposed method, we demonstrate fitting and
deformation, the two human body models to be used for the
cloth simulation.  

1. Introduction

 One application of computer graphics is cloth simulation or
CAD system for cloth design. Such a cloth simulation system
must generate human body models based on measured data
obtained from range data for a given person putting on clothes.
Metaballs are useful for modeling a human body because of the
smooth and flexible surfaces.  In our system, the human body
model is created by layered metaballs which correspond to the
horizontal cross section of the body.  This paper proposes two
methods: a method for fitting the metaball surface to the
measured surface, and a body deformation method.
In our approach, we prepare a basic human body modeled by
metaballs.  This model can be optimized to fit the measured
human body. For each cross section of the human body,
metaballs are generated using sampling points on the boundary
of the cross section (i.e., contour curve).  In order to fit the
metaball surface to the sampling points, we employed the
Steepest Descent method. We optimize the parameters (center
position, radius and density) of the metaballs by minimizing the
density error evaluated at each sampling point on the cross
section.
 In some cases, we need interactive deformation of the human
body model. We propose a deformation method using Bezier
curves for smooth deformation. That is, the sampling points on
each cross section are deformed by the Bezier curves controlled

by a few mouse operations.  For this operation, we propose an
effective algorithm for calculating the closest point on a Bezier
curve using the Bezier Clipping method [1] which is an iteration
method using only linear equations.  Previous methods for
finding the closest point on a curve have depended on two
calculation methods: the sampling method (finding the closest
point within subdivided curves) and the numerical method [2]
using the dot product of the derivative of the curve and the
vector from the point to the curve.  These methods insufficient
in light of computational cost, so we propose a more effective
approach.
 Our goal is to create a human body model for cloth simulation.
Thus, using the proposed fitting method, we have developed
two human body models, the standard human model from the
measured data of the average Japanese and a deformation of that.
To show the effectiveness of the proposed method, cloth
simulation is applied to these models.

2. Fitting metaballs to the measured body using
the Steepest Descent method

2.1. Object representation by metaballs

 In the metaball technique, a surface of metaballs is defined as
the iso-surface (equi-potential surface) of a field function.  We
use the field function proposed by Nishimura [3].
 The field value at any point (x, y, z) is defined by distances di

from the specified center position of each metaball i in three-
dimensional space.  The task of the user is to specify the center
position (x i  , y i  , z i) of each metaball i , its density w i  at the
center, effective radius r i , and field function f(d i).  For n
metaball, the density W at point (x, y, z) is defined by

A surface of metaballs is defined as an iso-surface when the
density equals threshold value T.  If there is only one metaball,
the shape is a sphere. Threshold radius rt is defined as the radius
of the metaball when the density equals the threshold value.

2.2 Using the Steepest Descent method

 A cloth simulation system must generate human body models
based on measured data. Muraki [4] proposed a “Blobby

W(x, y, z) = wi f (di
i =1

n

∑ ). (1)



Model” for automatically generating a shape description from
range data. He started with a single metaball and introduced
more metaballs by splitting each metaball into two further
metaballs so as reduce the energy value. However, the 3D object
is slowly recovered as the iso-surface produced by a large
number of metaballs. Bitter [5] proposed a method that
combined medial axises and implicit surfaces in reconstructing a
3D solid. However, this method requires many implicit
primitives.  If the model is constructed of too many implicit
primitives, the computational cost for cloth simulation becomes
prohibitively expensive.  To generate the human body model
with a small number of metaballs and minimal error from the
mesured data, we propose generating the model by using layered
metaballs which correspond to the horizontal cross section of the
body.
 Cross sections of the body are extracted from measured data in
equal space. Metaballs are arranged roughly inside the contour of
each cross section by hand (see Fig.1). The relationship between
the sampling points on a cross section of body and themetaballs
is shown in Fig.2. The metaball parameters (x i , y i , z i , r i , w i)
are optimized by minimizing the density error evaluated at each
sampling point on the contour of the cross section of the body.
 Field densities for each metaball (based on distance between
the sampling point and each metaball) are summed.  When the
density on the sampling point arrives at the threshold density T,
the metaball surface fits the sampling point perfectly.  The
square-sum of error between the density on each sampling point
j and threshold value T is defined by

 E =
1

2
wi f dij( ) − T

i =1

n

∑ 
 
  

 j =1

m

∑
2

, (2)

where dij is the distance from the sampling point j to the center
of metaball i, and n is the number of metaballs.  
 We optimize the metaball parameters (xi, y i , z i , ri, w i) by
minimizing E evaluated at all sampling points on the cross
section.  Non-linear optimization is necessary to solve this
problem.  Though any non-linear optimization method can
optimize the parameters, to optimize the parameters by the
Newton method or Quasi-Newton methods (to generate a human
body model), an inverse matrix of enormous unknown numbers
(i.e., 5n) must be calculated at every iterating step. For this
optimization, we employ the Steepest Descent method because
of its simple algorithm. Parameter X(0)  for the initial shape of the
metaballs is defined by

where t is the transposition symbol.
 Gradient ∇ E of E is calculated in the Steepest Descent
method. ∇ E is defined by

 
The parameter X(0) and ∇ E(X(0)) are substituted into the next
equation, and a new parameter X(1) for the metaballs and
∇ E(X(1)) are calculated.  An operation to calculate the next new
metaball parameter is repeated until E becomes small enough, at

which point the optimum value of the parameter is obtained.
 X

k +1( ) = X
k( ) −α ⋅∇E X

k( )( ) , (5)
where α  is step size, k is the number of iterative steps, X(k) is
the parameters of the metaballs, and X(k+1) is the new parameters
of the metaballs.

Figure 1. Combination of metaballs on cross

sections.

Figure 2. Relationship between sampling points on a
cross section of body and metaball surface.

(a) Before fitting

(b)After fitting

Figure 3. Sampling points on cross section including

acromion and metaballs.
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X (0) = (x1, y1,z1,r1 , w1,..., xn , yn ,zn ,rn,wn )t , (3)
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 As an example, Fig.3(a) shows sampling points on a cross
section including acromion and metaballs before optimizing.
Eleven metaballs are arranged roughly in order to fill up the
inside of the sampling points on the contour of the cross
section. The black points are sampling points, the circles are the
surfaces of each metaball on the cross section, and the numbers
in the circles are identification numbers for the metaballs.  The
metaball surface on the cross section is represented by the white
area.  The optimized result is shown in Fig.3 (b).  As shown in
this figure, the metaball surface fits the sampling points.
 The metaballs on every cross section are combined (i.e.
layered).  After combining, the metaball surface changes
slightly due to interaction between the layered metaballs.  Then,
the parameters of all layered metaballs are optimized.  We can
save computation time by using this two step optimization, one
for each layer and one for the combined layers.

3. Deformation of the human body model using
Bezier curves

 In our system, the human body model is layered.  Free-form
deformation of the body can be done by deformating each layer.
That is, the deformation can be achieved by the combination of
2D operations.  In our approach, the shape of the human body
is defined by sampling points on the cross sections. That means
that the deformation can be done by moving the sampling
points in a 2D plane.  We propose a method of free-form
deformation using Bezier curves controlled by a few mouse
operations. Sampling points can be moved along every kind of
curve, including B-spline curve, because any curve can be
converted into Bezier curve. The main idea of the deformation is
to move the sampling points through field morphing: the field
is defined by Bezier curves, and these curves are deformed by
detection of the closest point on the curve to a point on a screen.

3.1. Previous work for calculation method of the
closest point on a curve

 We have two methods to find the closest point on curve C
defined by parameter u to a specified point Q.
  The subdivision method into sub-spans is as follows; the
method evaluates curve points at equally spaced parameter
values on a curve, and compute the distance of each point from
Q, and choose parameters to be the value yielding the point
closest to Q.  In this method, we need 10n of point evaluations
and distance calculations when we need an accuracy of 10-n (e.g.,
n=3) on parametric space (see Fig.4(a)).
 While the numerical method is as follows; the distance from Q
to a point P on curve C(u) (see Fig.4(b)) is minimum when the
dot product of tangent vector C’(u) and the vector QP is zero
(see [2]). That is, when the vector from Q to a point P on the
curve is perpendicular to the tangent vector C’, the distance PQ
is minimum (see Fig.4(b)). That is, we can obtain the following
equation.

                                                                                   
The above  equation  corresponds  to

 (x(u) − xq)
dx(u)

du
+ (y(u) − yq )

dy(u)

du
= 0.

 The distance from Q to C(u) is minimum when equation (6) is
satisfied.  In the case of degree n curve, we should solve degree
(2n-1) polynomial.  In general this is solved by Newton
iteration.  For Newton iteration, however, we need the initial
guess for the iteration, and it is not robust for multiple roots
(minimal points).
 Given  a point Q assumed to lie on the curve  C(u) of degree
n, point  inversion is the problem if finding the corresponding
parameter, such that C(u) = Q.  It is known that point inversion
can be solved in closed form if n ≤ 4. The problem is
exacerbated when the point Q is not precisely on the curve,  so
we need to solve it by using the projection for curves (or
minimizing the distance between Q and C) .

Figure 4. Finding the closest point on a curve.

3.2. Proposed method for calculation of closest point

All parametric curves can be converted to Bezier form.  So we
discuss here planer Bezier curves.  We define a function g(u)
which is the left side of equation (6), and g is given by

where

and Bi
n(u) =

n
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i(1− u)n− i denote the Bernstein basis

polynomial.
 The function g(u) in equation (7) is a degree (2n-1) polynomial
in Bernstein form.  We can obtain the minimum distance when
g(u) = 0 is satisfied.  In the case of degree 3 curve, we have to
solve degree 5 polynomial for which there is no closed form to
solve and which has computational cost and robustness
problems (These can not be solved analytically in the case of
such a high degree curve).  For such higher degree of curves, the
problems are more serious.  The method proposed here
overcomes  them by using the Bezier Clipping Method which
was developed for ray tracing of Bezier patches [1].  The root of
the function is effectively and precisely solved by using Bezier
Clipping which uses the convex hull property of Bezier curves
and is an iterative (and robust) method using liner equations for
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higher degree functions.
 The method converges  to roots by clipping away the intervals
which have no solutions; these intervals are extracted by using
the geometric characteristics of the convex hull property of
Bezier curves.  In this problem we could get enough of  a
solution through several iterations (3 to 8). This means the
proposed method is 2 digits faster than the sampling method (or
subdivision method) mentioned before.  
 Intervals containing a root or roots are extracted by using
function g  which  is converted from C and C’, and curve C is
clipped by using the interval.  By repeating this process,
intervals containing solutions become narrow, and then the
solution can be obtained.

3.3. Outline procedure of the proposed method

  Lets consider an arbitrary point Q(xq,yq) and  Bezier curve C(u)
whose control points Pi(xi,yi) (i=0,..,n);  the derivative of curve
C is called hodograph C’. Example of the third curve and
arbitrary point Q is shown with Fig.5 (a).  Function g(u) and
convex closure of the control point are shown with Fig.5 (b).
 The algorithm finding the closest point P on a planer Bezier
curve C within a specified distance Rmax from Q is as follows(see
Fig.6):

Figure 5. Extracting the interval satisfying g(u)=0
(in the case of cubic Bezier curve).

  1)  After transforming control points of C so as to be origin
Q (see equation 8), calculate distances, d0, dn, from Q to two
endpoints, P0, P n, and set the minimum distance of d0, dn and
Rmax as dmin, that is, dmin=min(d0,, dn, Rmin)
  2)  Clip curve C by the band which bounds of the circle with

radius dmin and   which is perpendicular   to P0Pn (see Fig.6)
  3)  Obtain C’  from curve C (see equation 8), and calculate
function g from C and C’ (see equation 7)
  4)  If the signs of all control points of g are positive(or
negative) (i.,e., there is no different sign), then this
section(segment) of the curve has no solution, and so proceed to
the next section, and return to step 3.
  5) Extract the parameter interval which satisfies g= 0 (see
[umin,umax] in Fig.5(b)).
  6) If a Bezier clip fails to reduce  the parameter interval width
(umax-umin), split the curve in half, then return to step 3 for one
half.
  7) If umax - umin> ε  (user given tolerance),  clip the curve with
this interval, then return to step 3.
  8) Calculate distance d by assuming as u=(umin+umax)/2,
redefine the minimum distance dmin = min(d, dmin), store x and y
at point C(u), if there is any remaining section of the curve,
return to step 3.
 Note that the function g is not solved directly;  g is just used
for extracting the interval which has solutions (roots). Bezier
Clipping is completed by subdividing C into three segments
using the de Casteljau algorithm.  The degree of g is higher
than that of C, so the clipping process is performed to curve C
not for g.

Figure 6. Clipping the Bezier curve by using the band
with width dmin .

3.4. Interactive shape modification of curves

  The designer usually modifies a parametric curve by moving
one of its control points.  It is difficult to predict the final shape
of the curve if we move the control point.  So we propose a
useful technique which can deform the curve directly by moving
a specified point on the curve using the mouse on a screen.
 We can find parameter value u at the closest point P on a curve
by clicking point Q near the curve using a mouse button.  Lets
consider moving point P of the curve.
 After selecting the closest control point Pk to parameter value
u, the displacement of control point ∆Pk can be obtained by
using the displacement of mouse cursor ∆P at P (see Fig. 7).

 ∆Pk = ∆P / Bk
n(u) .                                ( 9 )
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Figure 7. Shape modification of a curve.

3.5. Smooth deformation using Bezier curves

 In our approach, the shape of the human body is defined by
sampling points on cross sections. This means that the
deformation can be done by moving the sampling points in a
2D plane.  For this operation we have to solve two problems:
limiting the number of operations and smoothing the
connectivity between sampling points. For smooth
displacement of sampling points, the idea of image warping can
be applied.
 For image warping, there are several methods such as feature-
based method [6], mesh warping [7,8] , and FFD(Free Form
Deformation) [ 9].  The method proposed can be categorized as
feature-based method.  
  Beier [6] has introduced a technique for morphing based upon
fields of influence surrounding two-dimensional control
primitives. He called this approach field morphing.  He used
line segments as control primitives.  In our method, however,
the field morphing is performed by using Bezier curves.  He
used two parameters, the distance from the line v, and the
position along the line u (0<u<1.).  We extend this idea to
Bezier curves.  If the degree of the curve is one, the both
methods are equivalent.  Our method also defines two
parameters,  u and v, as mentioned before.
 Compared with the method using line segments, the method
using Bezier curves has the following advantages:
   (1) Deformation is performed by small number of curves.
   (2) Smooth deformation (little variation of distortion) can be
realized. (For smooth transition we need the number of
connected lines along the curve.)
   (3) Complex deformation can be done by moving only one
point on the curve.
 Compared with mesh warping, the method proposed here has
the following advantages:
   (1) Though a lot of mesh points have to be moved in mesh
warping, moving only one or a few points on a curve create
sufficient visual effects.
   (2) For Bezier mesh (used in FFD [9]) and B-spline mesh
[7], the displacement of control points do not correspond to the
displacement of the image.
 It is the displacement of the points around the curve
corresponds to the displacement of image.  Therefore, this

method is very effective for interactive systems.
 By using the distance calculation to curves, we can realize
feature-based deformation.  We can get two parameter values u
and v with respect to the relationship between a point Q and
Bezier curve C, where u is a parameter value at the closest point
P on curve C(u) from Q, v is the distance from Q to P.   By
using the techniques described in the previous sections, we have
a useful tool.  That is, these parameters can be obtained by the
method in section 3.2, and we can easily deform the curve
interactively by using the technique in section 3.4. As for the
application of these techniques, we propose methods for
deformation of object representation by metaballs.
  First, we discuss the calculation method of the coordinates
system related to a single curve.  Lets denote parameters (uk, vk)
for point Pk with respect to curve Ck, the coordinates of point P
is defined by (see Fig.8-a)
 Pk = Ck(uk ) + vk N(uk ), (10)           
where N is a unit normal vector at point Ck(uk).

After deforming  curve Ck to Ck
d,  point  P moves to point

Pk
d having the same parameters (uk, vk), the new point is defined

by (Fig.8-b)
 Pk

d = Ck
d
(uk ) + vk N

d
(uk ). (11)          

For m Bezier curves, Ck(k =1,... ,m), new point Pd is given by

 Pd = wkPk
d

k= 0

m

∑ , (12)         

where  wk  are weights which are of similar definition to those
used in [6]; the weights wk assigned to curve k should be
strongest when the point is exactly on the curve, and weaker
the further from it the point is.

(a)

(b)
Figure 8. Transformation of coordinates by using
Bezier curve.
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3.6. Deformation of the human body model

 So far, we have described 2D deformation.  The human body
model is created by layered metaballs which correspond to the
horizontal cross section of the body.  On each cross section,
metaballs are generated from sampling points on the boundary
curve of the cross section.  These sampling points are deformed.
The procedure for deformating the human body model is as
follows.
(1) Select the cross sections of the human body to be deformed
after displaying the sampling points on a screen (see Fig.9(a)).
(2) Overlay Bezier curves along with the sampling points of the
cross section, and deform the sampling points (red points in the
figure(see color page)) by deforming the Bezier curves (see
Fig.9(b)). The curves are deformed by moving the mouse.
(3) Optimize the parameters of metaballs to fit the deformed
sampling points (see Fig.9(c)). In this optimization, the Steepest
Descent method is used (see Section 2).
 Fig.9(a) shows the screens of JAVA applets which display
finding the cross sections of the human body.  In Fig.(b), three
Bezier curves are overlaid on the sampling points on the boundary
of the cross section.  Two are selected by the mouse cursor and
deformed.   The deformation can be obtained easily with a few
mouse operations. As shown in the figure, the points along(or
close to) the curves are moved to the points on the deformed
curves.  That is, the displacement of points around the curves is
exactly same as that of the mouse movement.  The deformation

(a) Sampling points on boundary curves of horizontal cross

sections

(b) Deformation of boundary

(c) Optimization of metaball

          (d) Original                　 (e) Deformed
Figure 9. A human body modeled by metaballs
(some sample points on the cross sections of the
metaball surface are deformed by the proposed
method).
is very smooth because the points move along the Bezier curve.
By moving the curve, sampling points(red points in the
figure(see color page)) are moved smoothly.  If we want to hold
some of the points, we can overlay the curves on them as
constraint curves. In order to fit the surface of the metaballs to
the deformed sampling points, the position and radius of each
ball is optimized using the Steepest Descent method(see
Fig.(c)). Fig.9 (e) shows an example of deformation (the breast
is deformed).   Fig.(d) is the original body.

4. Examples

 Fig.10(a) shows the human body model based on the
measured data of a standard Japanese female whose height is
156.8 cm and bust girth is 81.5 cm. For comparison with (a),
Fig.10 shows the body model in triangular patches.  Table 1
shows distance-error between the surface of metaballs and the
sampling points on the major cross sections. As shown in the
table, we can get the human body model with minimal error.
The cpu times for first and second steps are 6 minutes and 118
minutes on a Silicon Graphics Indigo R4000, respectively.
The cpu time for the method not divided into two steps is 201
minutes.  Thus, the proposed method saves computation time.
  To show the effectiveness of the proposed fitting and
deformation methods, the two human body models are applied for
cloth simulation [10,11,12].  The cloth simulation is applied to



the standard human body model, then to the deformed model
from the standard.  Arms are added to the models in Fig.10. We
can move their arms. Fig.11 shows paper patterns for a blouse
simulation.  Fig.12(a) shows a standard body model raising its
arms.  Fig.12(b) shows a body model with a breast deformed
from the standard. Fig.12(c) and (d) show cloth simulations of the
blouse for the standard body and the one with the deformed
breast , respectively.  In this case, the same blouse is used for
both bodies.  As shown in these images, we can get realistic
shapes of clothes to fit various human bodies.

        (a) Metaball model       (b) Triangular patch model
Figure 10. Standard human body model.

Figure 11. Paper patterns for a blouse.

 (a) Standard human body model

    (b) Deformed model

(c) Simulated shape of blouse on standard human body model

(d) Simulated shape of blouse on deformed model

Figure 12. Simulated shape of the blouse on the

human body model.



Table 1. Distance-error between the metaball surface

and the sampling points on the major cross sections.

    Distance-error  after  fitting

Mean (mm) S.D. Max (mm)

Cervicale 1.57 1.13 5.24

Acromion 1.28 0.94 4.5

Nipple 0.98 0.88 4.66

Waist 0.56 0.41 1.7

Iliospinale 1.54 0.88 3.65

Hip 0.79 0.61 2.49

5. Conclusion

 A cloth simulation system must generate human body models
based on measured data obtained from range data. This paper has
proposed modeling and deformation methods of human body.
This paper has also proposed a new detection algorithm for the
closest point on a curve to a point on a screen: As for the
applications, this paper also proposed an interactive deformation
of human bodies.   
 The conclusion is described as follows.
(1) We optimize the metaball parameters by the Steepest Descent
method to generate the body model based on the measured data
obtained from range data.
(2) We propose a method of free-form deformation using Bezier
curves. We can get the closest point on a curve using the Bezier
Clipping method, which uses the convex hull property of Bezier
curves and is an iterative method using linear equations with a
small number of iterations.  This method is useful for
interactive operations such as deformation because of its quick
calculation.
(3) The metaball human body models used for cloth simulation
are displayed as excellent examples to illustrate the proposed
method.
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