
FLUID SIMULATION BY PARTICLE LEVEL SET METHOD
WITH AN EFFICIENT DYNAMIC ARRAY IMPLEMENTATION ON GPU

Yasuhiro Matsuda
The University of Tokyo

Yoshinori Dobashi
Hokkaido University

Tomoyuki Nishita
The University of Tokyo

ABSTRACT

We propose an efficient method to treat dynamic array
data on Graphics Processing Unit (GPU), which is applica-
ble to fluid simulations. Few numbers of dynamic structures
have been realized on GPU since most of the previous meth-
ods store the data in texture to represent the structure and it
is difficult to manage the dynamic structure on the texture.
Our method uses vertex buffer object for representing the
data structure and combines the transform feedback and the
geometry program, which are the functionalities of GPU.
Our method offers a simple but an efficient way of realizing
dynamic array on GPU. Furthermore we apply our method
to the implementation of a particle level set method. The
particles data are represented by our dynamic array and
they are updated, added, and deleted completely on GPU.
By using the method, a fast and accurate fluid simulation
can be realized.

1. INTRODUCTION
Fluid such as water, smoke, and fire are fairly common

phenomena in daily life. This is the natural reason why cre-
ating realistic images of fluid is one of the most important
research topics in the field of computer graphics. Synthetic
animations of fluids are used in many applications such as
commercial movies, games and virtual reality. Therefore it
is very important to develop a method that can create real-
istic animations of fluids.

A lot of methods have been presented to create anima-
tions of fluid. Many methods employ physically-based ap-
proaches for producing a realistic fluid animation. Most of
the previous methods calculate the motion of fluids by solv-
ing the Navier-Stokes equations, which are the dominant
equation of fluid dynamics. The grid-based approach that
we employed in this paper subdivides the simulation space
into grids and calculate the physical quantities at each grid
point. Fluid motion is represented by these physical quanti-
ties at each point.

The grid-based methods need a surface tracking method
to extract the fluid surfaces, which are interfaces between

different kind of fluids (e.g. water and air). The level set
method [15] has been widely used as the surface tracking
method for not only a fluid simulation but also many areas
such as computer graphics, image processing and computa-
tional geometry. The level set method represents the inter-
faces as the zero value points of the implicit function called
a level set function, and tracks the interfaces by updating
the function based on the equation called advection equa-
tion. But naive implementations of the level set method for
a fluid simulation suffer from a volume loss caused by nu-
merical dissipation. To alleviate the problem, the method
is extended to the particle level set method [6], which is
known as one of the most accurate surface tracking meth-
ods. The particle level set method additionally places ficti-
tious particles around the interfaces, and updates the parti-
cles independently of the level set function. The method can
track the interface very accurately by correcting the level set
function with the information of the particles. The accuracy
is however achieved at the expense of high computational
costs. To address this problem, we show a fast method that
accelerates the particle level set method by exploiting the
parallel computational power of GPU. The particle level
set method needs addition and deletion of particles in the
simulation of fluid to accurately track the surfaces. Previ-
ous GPU-based simulation methods store data as a form of
textures. However, textures are not suitable for storing the
particle’s information since the number of particles dynam-
ically changes throughout the simulation. We alternatively
use vertex buffer object to store the particle data. By com-
bining transform feedback and geometry program, that are
the functions of GPU, we realize dynamic array on GPU. In
other words, update, addition, and deletion of element are
carried out fully on GPU. Our method offers a simple and
efficient way of particle addition and deletion in the particle
level set method. Finally we show a complete GPU imple-
mentation of the fluid simulation with the free surfaces by
using our method.

Contributions of this paper are listed below.

• Fast and accurate fluid simulation with free surfaces
completely on GPU

• Data transferring technique from the particle structure
to the grid structure using the depth buffer

• Particle addition and deletion algorithm on GPU

The rest of the paper is organized as follows. Section
2 discusses the related works. In Section 3, we give an
overview of the particle level set method. Section 4 de-
scribes the details of our algorithm that is suitable for GPU
acceleration. Section 5 demonstrates the efficiency of our
method by using several examples. Finally conclusions and
future work are explained in Section 6.

2. RELATED WORK
Most of the methods for simulations of complex fluid

motions are based on the methods developed in computa-
tional fluid dynamics. Stam proposed an unconditionally
stable fluid model [19], which used the semi-Lagrangian
method with an implicit solver. This model allowed a sig-
nificantly large time step and realized very fast simulations
without losing stability. Because of this advantage, the
model is widely used in computer graphics.

To track free surfaces, Osher et al. proposed the level
set method [15] using an implicit signed distance function
called level set function. To improve the accuracy, Foster et
al. proposed a method for tracking dynamic liquid surface,
which was based on combining the level set method with
fictitious particles [7]. Enright et al. extended the method
and proposed the particle level set method [4, 5, 6], which
improved the accuracy of tracking water surface. Moreover,
Enright et al. [5] demonstrated that the particle level set
method yielded sufficient accuracy even if first order semi-
Lagrangian scheme was used to advect the level set func-
tion. Losasso et al. extended the method to enable the
method to treat multiple liquids [13].

On the other hand, several particle-based methods have
been proposed as alternatives to the above grid-based meth-
ods. Stam and Fiume [20] introduced smoothed particle hy-
drodynamics (SPH) to depict fire and gaseous phenomena.
In SPH, the fluid is modeled as a collection of particles with
a smoothed potential field. Adams et al. reduced the com-
putational costs of SPH by introducing an adaptive sam-
pling algorithm [2]. Prem̂oze et al. [16] introduced the use
of the moving particle semi-implicit method (MPS) for sim-
ulating incompressible multiphase fluids. One drawback of
particle-based methods is that, if insufficient particles are
used, they tend to track free surfaces inaccurately. To pre-
vent this, a sufficiently large number of particles must be
used, which increases the computational cost. However,
particle-based methods have a merit that it can easily treat
the topology change of free surfaces.

Many methods have been implemented on GPU for ex-
ploiting computational power of GPU. Harris et al. pre-
sented a cloud simulation and rendering method [8] that is

completely implemented on GPU. Wu et al. presented a
three dimensional fluid simulation method [21] on GPU but
the simulation was limited to fixed boundary conditions.
Rumpf et al. implemented the level set method [17] on
GPU. This method is extended to a sparse method [12] by
Lefone et al. Particle-based fluid simulation is also imple-
mented on GPU. Amada et al. accelerated a fluid simu-
lation by SPH using GPU [3]. But processes for search-
ing neighboring particles is done in CPU so the transferring
data between CPU and GPU can be a bottleneck. Kolb pre-
sented another method for SPH on GPU [11], which elim-
inates the necessity of the neighbor search by summing up
the kernel function of particles on texture by using alpha
blending of GPU. Independently from us, Nicolas et al. re-
cently proposed a GPU implementation of the particle level
set method [14]. But they did not treat the fluid simulation
and the addition and deletion of particles on GPU.

3. OVERVIEW OF PREVIOUS METHODS

This section describes an overview of the particle level
set method which our method is based on.

3.1. Fluid Dynamics

The motion of fluids is calculated by solving the follow-
ing Navier-Stokes equations.

∇ · u = 0, (1)
∂u
∂t

= −(u · ∇)u − ∇p
ρ

+ ν∇2u + g, (2)

whereu is the velocity of the fluid,p is the pressure,ν is the
kinematic viscosity,ρ is the density andg is a gravitational
force.
To calculate the equations, we used the stable fluids method
[19]. This method updates the velocity field by calculating
Eq. (2). This method obtains the updated velocity by calcu-
lating the terms on the right side of Eq. (2) one by one. The
advection term(u · ∇)u is calculated by a semi-Lagrangian
method. The divergence free condition is satisfied by solv-
ing the Poisson equation derived from Eqs. (1), (2).

3.2. Level Set Method

The particle level set method is an extended version of
the level set method. The level set method represents fluid
surfaces with an implicit functionϕ called level set func-
tion. This function satisfies the following conditions,

ϕ(x) > 0 for x ̸∈ Ω,

ϕ(x) ≤ 0 for x ∈ Ω,

wherex is the coordinate of the simulation space andΩ
represents the simulation space containing fluids. In other

words,ϕ < 0 cooresponds the fluid region,ϕ > 0 to the air
region andϕ = 0 indicates the interfaces. The initial value
is determined in accordance with the initial settings of fluid.
A singed distance from the interfaces is often used for the
level set function and it is used in this paper, too.

The level set function is updated with the advection
equation given by

ϕt + u · ∇ϕ = 0. (3)

To maintain the signed distance property of the level set
function, we solve the reinitialization equation given by,

ϕτ = −S(ϕτ=0)(|∇ϕ| − 1), (4)

whereτ is a fictitious time.S(ϕ) is a smoothed signed dis-
tance function defined by

S(ϕ) =
ϕ√

ϕ2 + h2
, (5)

whereh is a grid spacing.

3.3. Particle Update

The particle level set method uses fictitious particles to
improve the accuracy of the level set method described in
the previous subsection. The particles are placed near the
surfaces. Each particle has a sign (±1) which is the same
as the sign of the value of the level set function where the
particle is initially placed. The position of the particles are
updated using,

dxp

dt
= u(xp), (6)

wherexp is the position of each particle andu(xp) is its
velocity.

Each particle has a radius, which is used to identify the
error and to correct the level set function. The radius is de-
termined based on the distance from the fluid surfaces. But
it is bounded by a minimumrmin and a maximumrmax.
We usedrmin = 0.1h and rmax = 0.5h. The radius is
updated at every time step by the following equation,

rp =

rmax spϕ(xp) > rmax

spϕ(xp) rmin ≤ spϕ(xp) ≤ rmax

rmin spϕ(xp) ≤ rmin

. (7)

3.4. Error Correction by Particles

For each particlep, a spherical level set functionϕp is
associated. Its value atx is determined by the particle radius
as follows,

ϕp(x) = sp(rp − |x − xp|), , (8)

wheresp is the sign of the particle. The zero level set ofϕp

corresponds to the boundary of the particle sphere. These
level sets are only defined locally at the eight points (four
points in two-dimensional case) of the grids neighbouring
the particle. The values ofϕp are the estimated values of
the level set function at the points. They are used to cor-
rect the level set function. To identify grids which needs to
be corrected, the particle radius and the sign are used. As
the simulation proceeds, some particles moves into a region
where the sign of the level set value is different from the
sign of the particles. Among them, the particles whose dis-
tances from the interfaces are longer than their radius are
calledescaped particles. The positive escaped particles are
used to correct the level set function ofϕ > 0 region and
the negative escaped particles are used to correct the level
set function ofϕ ≤ 0 region. Let us consider theϕ > 0
region. Using Eq. 8, theϕp values at the eight grid points
neighbouring the particle are calculated. Eachϕp is com-
pared to the local value ofϕ and the maximum of these two
values is taken asϕ+. This is done for all escaped positive
particles. That is, given a level setϕ and a set of escaped
positive particlesE+, ϕ+ is initialized with ϕ and calcu-
lated as follows,

ϕ+ = max
∀p∈E+

(ϕp, ϕ
+), (9)

whereE+ is a set of positive escaped particles.ϕp is cal-
culated and compared withϕ at only eight neighbor points
of particles. Similarly, the corrected level set function of
the ϕ ≤ 0 region denoted byϕ− is initialized with ϕ and
calculated as follows,

ϕ− = min
∀p∈E−

(ϕp, ϕ
−), (10)

whereE− is a set of negative escaped particles.ϕ+ andϕ−

are finally merged to a single level set by

ϕ =

{
ϕ+ if |ϕ+| ≤ |ϕ−|
ϕ− if |ϕ+| > |ϕ−|

. (11)

3.5. Addition and Deletion of Particles

As simulation advances, the interface stretches and tears.
In such regions there may not be enough number of parti-
cles to obtain sufficient accuracy. In order to avoid this inac-
curacy caused by sparse particles and maintain a sufficient
density throughout the simulation, particles are reseeded pe-
riodically. Particles are not only added in grid cells near the
interface, but also deleted when they have drifted too far
from the interface to provide useful information, e.g. for a
thresholdbmax, positive particles withϕ(xp) > bmax and
negative particles withϕ(xp) < −bmax. This prevents par-
ticles from increasing infinitely.

3.6. Summary of Simulation Process

We use the stable fluids method to calculate the velocity
field of the fluid and the particle level set method to track
the surfaces. The velocity field, the level set function and
the particles are initialized to the initial state. Then we up-
date them by the above methods. The whole simulation is
summilized as below. In the list, 2 to 7 correspond to the
processes of one time step.

1. Initialization of data(level set funciton, velocity, parti-
cle).

2. Update of the velocity

3. Update of the level set function

4. Update of the paticles

5. Error correction of the level set function by paritlces

6. Reinitialization of the level set function

7. Addition and Deletion of particles (per several time
steps)

8. Back to 2

4. PROPOSED METHOD

4.1. Data Structure

For GPU implementation, we used OpenGL graphics
API and Cg (version 2.0 beta) shading language. To store
the data of level set functionϕ, we used a 3D texture with
a 32 bit floating point luminance color. For fluid velocity
u, we used a 3D texture with 32 bit floating point RGB col-
ors, where each color is respectively corresponds to the x,
y, or z component of velocity. For particles data, we used
vertex buffer object, which offers a function to efficiently
draw a large amount of primitives. To efficiently treat par-
ticles data, we packed particles coordinates and radii and
signs into a four floating point values as follows. The first
three values represent the particle coordinates. An absolute
value of the fourth value represents the particle radius and
its sign represents the particle sign. By this packing method,
we represent a particle as an element of vertex buffer object
with four components. Current GPU has a limitation that it
cannot read from and write into a single texture or a single
vertex buffer object at the same render pass. For this reason,
we used a double buffering technique. That is, we prepared
two textures for the level set function and the velocity, and
two vertex buffer objects for the particles.

4.2. Velocity Computation

The fluid velocity is computed based on the stable fluids
method [19]. The GPU implementation of the method is
basically the same as Harris’s one [9].

In this paper, air region is treated as empty. Therefore,
we need a velocity extrapolation method to the air region for
advancing particles at the region. We followed the model
equation [6] for extrapolating the velocity given by

∂ua

∂τ
= −N · ∇ua (a = 0, 1, 2), (12)

whereu = (u0, u1, u2) is velocity vector,τ is a fictitious
time andN is a unit vector perpendicular to the fluid sur-
faces. A fast method [6] can be used in case of CPU im-
plementation. But this method is not suited for GPU im-
plementation because it needs to proceed calculation in or-
der of level set function value increasing by sorting. The
method determines the velocity value by enforcing the con-
dition ∇ϕ · ∇u = 0 from the point whereϕ is the small-
est.We used a similar method which was modified to suit
for the GPU implementation. Our method enforces the con-
dition in upwind manner without sorting. The computation
order is show by numbers in Figure 1.

The concrete calculation processes are as follows.s0 is x
direction of point which has smaller level set function value
and calculated as follows.

if (ϕ[i,j,k] > ϕ[i+1,j,k]) ∧ (ϕ[i,j,k] > ϕ[i−1,j,k]) then
if ϕ[i−1,j,k] > ϕ[i+1,j,k] thens0 = 1
elses0 = −1

else ifϕ[i,j,k] > ϕ[i+1,j,k] thens0 = 1
else ifϕ[i,j,k] > ϕ[i−1,j,k] thens0 = −1
elses0 = 0

s1, s2 are y and z directions respectively and calculated in
a similar way withs0. Updating velocity in the air region
is computed by Eq. (13). The more details and derivation
of the equation are found in [1]. By repeating this upwind
update for several times, we obtain extrapolated values.

I = (1, 1, 1),
Φ[i,j,k] = (ϕ[i,j,k], ϕ[i,j,k], ϕ[i,j,k]),
Φ′

[i,j,k] = (ϕ[i−s0,j,k], ϕ[i,j−s1,k], ϕ[i,j,k−s2]),

u′a
[i,j,k] = (ua

[i−s0,j,k], u
a
[i,j−s1,k], u

a
[i,j,k−s2]

),

u′′a
[i,j,k] =

u′a
[i,j,k] · (Φ[i,j,k] − Φ′

[i,j,k])

I · (Φ[i,j,k] − Φ′
[i,j,k])

. (13)

4.3. Update of Level Set Function

By using GPU, the level set function is updated in pal-
lalel based on Eq. (3). To compute this step, we used semi-
Lagrangian advection method [5] in the fragment program.

Figure 1. The calculation of velocity extrapolation pro-
ceeds from 1 to 3 .

To smooth the level set function, we conduct a process
called reinitialization based on Eq. (4). To efficiently reini-
tialize the level set function, the fast marching method [18]
is often used in CPU implementation. However the method
is not suited for GPU implementation. Therefore we used
a semi-Lagrangian style method used in [10] that is well-
suited for GPU. The method divides Eq. (4) into an advec-
tion termS(ϕτ=0)|∇ϕ| and a non-advection termS(ϕτ=0)
and calculate each term one-by-one. Firstly, we calculate
the advection by semi-Lagrangian method to produce an in-
termediate value. To this intermediate value, we add a value
calculated by non-advection term. By repeting this process
for several times, we obtain a reinitialized value.

4.4. Error Correction Algorithm with
Depth Buffer

At this part, we identify and compute thecorrection
value based on Eqs. (8) through (11) in order to fix the
level set function. To compute above processes on GPU,
we have to write the correction value into the texture of the
level set function after reading the particle data from the
vertex buffer object. Nicolas et al. proposed an implemen-
tation using alpha blending for this process [14]. We show
another approach based on depth test.

Firstly we associate the correction value written to level
set function texture with the depth value by defining trans-
form functionf . f is a monotonically increasing function
andf : L → [0, 1], whereL is the range of the level set
function. In practice, the range is usually bounded by some
minimum valuelmin and maximum valuelmax so this func-
tion is simply defined forl ∈ L as follows,

f(l) =
l − lmin

lmax − lmin
. (14)

By using this function, we prepare additional two textures
for ϕ+ andϕ−. We used flat 3D textures [8] as the data
structure for these textures in order to allocate depth buffer
for all level set function values. The initial values of these
textures are set to the same values as the level set function
ϕ obtained in the previous time step. To each texture we
attach depth buffer by using framebuffer object, which is an

OpenGL extension. The depth values of the buffers are set
by transformingϕ value usingf . When we create the tex-
ture for ϕ+, we set the depth test function to pass greater
values. Similarly, when we create the texture forϕ− we
set the depth test function to pass less values. Next we draw
the data from vertex buffer object as points and calculate the
destination position on texture in the vertex program. In the
geometry program, we identify escaped particles. Around
the position of escaped particles, we generate eight (four in
two-dimentional case) points corresponding to neighboring
grid points. Ordinary particles other than escaped particles
are simply discarded by generating no point primitives. In
the fragment program, we calculate a correction value and
the depth value by transforming the correction value using
transform functionf . Finally, by mergingϕ+ andϕ−, we
obtain the level set functionϕ corrected by particles. Over-
all process is summarized as Figure 2

Figure 2. (Left) Mapping from level set function to depth
value. (Right) Data flow in creating texture forϕ+, ϕ−

4.5. Particle Data Management on GPU

The position of the particles are updated using Eq. (6) by
second order Runge-Kutta method in the vertex program.
Among two vertex buffer objects for double buffering, one
is used as input and the other as output. The results are writ-
ten directly into the output vertex buffer object by using an
OpenGL extension GLNV trnasformfeedback. It enables
us to write the results calculated by the vertex program or
the geometry program to the vertex buffer object without a
rastarization. This function allows us to store the particle-
based data as the vertex buffer object. The particle radius
can be updated at the same vertex program pass because we
packed the particle coordinate and radius into an element of
vertex buffer object.

4.6. Addition and Deletion Algorithm on
GPU

Addition and deletion of particles are needed to keep an
accurate simulation. Figure 3 shows the behavior of a sur-

face advected and stretched in the vortex flow field [4]. Par-
ticles are added periodically in the left figure and not added
in the right. As the shape is streched, particles get sparse at
the outer end of the shape in the right figure, which causes
area losses. On the other hand, the particle density is kept
sufficient by addition in the left figure so there are fewer
area losses in the shape.

(a) Addition (b) No addition

Figure 3. Comparison of accuracy between particle addi-
tion and no addition in vortex flow.

In CPU implementations, we can easily do the addition
and deletion of elements by using, for example, a list struc-
ture. However a similar structures efficiently working on
GPU are not presented so far. We realize the addition and
deletion in the following way. Firstly, before particle ad-
dition, we delete unnecessary particles. Unnecessary parti-
cles are the ones far from the surface or positive particles at
the grid cell where the level set function has local minima,
which is explained as a sink for air [13]. These particles are
identified and deleted by not generating the point primitive
in the geometry program.

Next we illustrate the addition algorithm. Although there
are a variety of addition strategies according to situations,
we used a simple reseeding strategy described in the fol-
lowing. To determine regions where particles are sparse, we
simply count the number of particles at each grid cell and
consider the grid cells as sparse when particles are fewer
than the user specified numberM . We add particles to the
sparse grid cells at random position inside the grid cells un-
til the number gets toM . To count particles at each grid
cell, we utilize alpha blending and set the blending equa-
tion to GL FUNC ADD. In the same manner as correction
of level set function by particle, we render points of size
one into the texture for counting from vertex buffer object.
The output colors of the points are set to1.0 for calculating
accumulated values of the number of particles. The number
of added particles at each grid cell is computed in the ge-
ometry program. The number is zero if the grid point is too
far from the surfaces, which is easily identified by checking
the level set function value. Near the surfaces, the number is
M −Nx, whereNx is the number of particles in grid cells.

We set the output offset in vertex buffer object to next to the
last element of current particles. Finally we draw points of
size one at each grid point and as described above, calculate
M −Nx and generate the number of point primitives in the
geometry program. Figure 4 illustrates this process (M=16
in the figure).

(a) Particle counting. (b) Particle generation.

Figure 4. (a)Firstly the particles are counted in each grid
cell. (b)Then needed particles are calculated and generated
in the geometry program.

5. RESULTS

To evaluate the accuracy of our method we conducted a
deformation test under the incompressible flow field, which
is also called Enright test [4]. This test advect the sphere of
radius 0.15 placed at (0.35, 0.35, 0.35) in the velocity field
given by

u(x, y, z) =

 2 sin2(πx) sin(2πy) sin(2πz)
− sin(2πx) sin2(πy) sin(2πz)
− sin(2πx) sin(2πy) sin2(πz)

 .

Figure 5 is the images of this test. (a) is by our method,
(b) by the CPU implementation, (c) by our method without
correction of the level set function by particles. (a) and (b)
revert to the almost the same shape as the original, which
means they accurately track the surface. By comparing (a)
with (b), we can see our method can track the surface with
almost the same accuracy as the CPU implementation. On
the other hand, a large volume is lost in the final shape dur-
ing the test of (c) due to the numerical dissipations. The
necessity of the correction of the level set function by parti-
cles is shown by this result.

Table 1 shows the time to calculate a single time step of
the simulation of this test and compares the result between
the GPU implementation (our method) and the CPU imple-
mentation. Table 2 lists the time for each process (963 grid
cells). As shown in Table 1, we achieved about 10 to 13
times faster simulation than that of the CPU implementa-
tion.

Figures 6 and 7 show the results of three dimensional
fluid simulations by our method. In Figure 6, a water
droplet falls onto the water surface and makes waves. In

Figure 7, armadillo-shaped water collapses and splashes.
The number of grids in each simulation is1283. All three
dimensional graphics images are rendered by using Pov-
Ray. In our experiments, we used a machine with Pen-
tium Core2 Quad 2.66GHz, and GeForce 8800 Ultra as the
graphics card.

Table 1. Comparison of the computational times (msec).
Grids CPU GPU Ratio
643 364 36.7 9.92
963 896 70.8 12.7
1283 1715 132 13.1

Table 2. Computational times of each process (msec).
process CPU GPU

update of level set function 37.5 3.12
reinitialization of level set function 104 12.5

update of particles 562 6.23
error correction of level set function 109 25.5
particle addition (per 20 time steps)1667 188

6. CONCLUSION AND FUTURE WORK
We have proposed a novel method for dynamic array on

GPU to treat particle data which dynamically increase and
decrease. By using our method, a fast particle level set
method on GPU is realized. Our method achieved about
10 to 13 times faster simulations than the particle level set
method on CPU. We demonstrated that a fast and accu-
rate fluid simulation with free surfaces was realized by our
method.

In future work, we plan to develop a method for treating
interaction between solid and fluid completely on GPU.

7. REFERENCES

[1] D. Adalsteinsson and J. A. Sethian. The fast construction of
extension velocities in level set methods.Journal of Com-
putational Physics, 148(1):2–22, 1999.

[2] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adap-
tively sampled particle fluids. InSIGGRAPH ’07: ACM
SIGGRAPH 2007 papers, page 48, New York, NY, USA,
2007. ACM Press.

[3] T. Amada, M. Imura, Y. Yasumuro, Y. Manabe, and K. Chi-
hara. Particle-Based Fluid Simulation on GPU.ACM Work-
shop on General-Purpose Computing on Graphics Proces-
sors and SIGGRAPH, 2004.

[4] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid
particle level set method for improved interface capturing.
Journal of Computational Physics, 183(1):83–116, 2002.

[5] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate
semi-lagrangian particle level set method.Computers and
Structures, 83:479–490, 2005.

[6] D. Enright, S. Marschner, and R. Fedkiw. Animation and
rendering of complex water surfaces. InSIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 736–744, New
York, NY, USA, 2002. ACM Press.

[7] N. Foster and R. Fedkiw. Practical animation of liquids. In
SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 23–
30, New York, NY, USA, 2001. ACM Press.

[8] M. Harris, W. Baxter, T. Scheuermann, and A. Lastra. Sim-
ulation of cloud dynamics on graphics hardware.Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 92–101, 2003.

[9] M. J. Harris. Fast fluid dynamics simulation on the gpu. In
GPU Gems, pages 637–665. Addison Wesley Pub., 2004.

[10] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. Advec-
tions with significantly reduced dissipation and diffusion.
IEEE Transactions on Visualization and Computer Graph-
ics, 13(1):135–144, 2007.

[11] A. Kolb. Dynamic particle coupling for GPU-based fluid
simulation. 18th Symposium on Simulation Technique.,
2005.

[12] A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. A stream-
ing narrow-band algorithm: interactive computation and vi-
sualization of level sets.International Conference on Com-
puter Graphics and Interactive Techniques, 2005.

[13] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. Multiple
interacting liquids. International Conference on Computer
Graphics and Interactive Techniques, pages 812–819, 2006.

[14] C. Nicolas, S. Robert, and K. Andreas. Real-Time Particle
Level Sets with Application to Flow Visualization. Techni-
cal report, Siegen University, 2007.

[15] S. Osher and J. Sethian. Fronts propagating with curvature
dependent speed: Algorithms based on hamilton-jacobi for-
mulations.Journal of Computational Physics, 79(1):12–49,
1988.

[16] S. Premǒze, T. Tasdizen, J. Bigler, A. Lefohn, and
R. Whitaker. Particle-based simulation of fluids.Computer
Graphics Forum, 22(3):401–410, 2003.

[17] M. Rumpf and R. Strzodka. Level set segmentation in graph-
ics hardware.Image Processing, 2001. Proceedings. 2001
International Conference on, 3, 2001.

[18] J. A. Sethian. Evolution, implementation, and application
of level set and fast marching methods for advancing fronts.
Journal of Computational Physics, 169(2):503–555, 2001.

[19] J. Stam. Stable fluids. InSIGGRAPH ’99: Proceedings of
the 26th annual conference on Computer graphics and in-
teractive techniques, pages 121–128, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co.

[20] J. Stam and E. Fiume. Depicting fire and other gaseous phe-
nomena using diffusion processes. InSIGGRAPH ’95: Pro-
ceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, pages 129–136, New York,
NY, USA, 1995. ACM Press.

[21] E. Wu, Y. Liu, and X. Liu. An improved study of real-time
fluid simulation on GPU.Computer Animation and Virtual
Worlds, 15(34):139–146, 2004.

(a) GPU implementation

(b) CPU implementation

(c)Rotation test without the correction of the levelset function by particles.

Figure 5. Comparison of accuracy between CPU and GPU implementation by Enright test.

Figure 6. Water droplet falls on the surface.

Figure 7. The fluid simulation of armadillo model collapsing.

