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ABSTRACT 
 
This paper proposes a novel method for real-time 
rendering of polygon mesh surfaces with reflection or 
refraction. The basic process is similar to dynamic 
environment mapping or cube mapping. Our proposed 
method is superior to those in that the accurate ray 
direction is reflected in the resulted image at every 
vertex on the mesh. Existing real-time techniques suffer 
from the differences between the viewpoint for the 
environment map and each reflection point. The 
proposed method minimizes this by finding an optimal 
viewpoint for the reflective or refractive mesh. With a 
sufficient number of vertices and map image resolutions, 
the users can render reflected images as accurate as ray 
tracing for all practical purposes, except for reflected 
objects around ray converging points of reflection on 
concave surfaces or refraction through convex lenses. 
The method can be applied to areas which require 
accuracy such as industrial design. Experiments with a 
CAD model of a car rear-view mirror and spectacle 
lenses exhibited results of sufficient quality for design 
verification. 

 

1. INTRODUCTION 
 
Reflection and refraction are essential elements of 
realistic image generation. Ray tracing [1] is a common 
rendering technique to simulate reflection or refraction. 
Although environment mapping and its variations are 
used for fast rendering of these effects, these techniques 
are effective for games and some concept design 
applications in which the users require only plausible 
reflection or refraction. In contrast, for simulation 
oriented applications such as mirror or lens design, ray 
tracing has been mandatory because of its accuracy. 
While acceleration techniques of ray tracing have been 
investigated from various standpoints, real-time 
rendering is still difficult to achieve for scenes of 
particularly large data sets. 

Our method provides a solution to real-time, high 
quality reflection/refraction by limiting the ray-object 
intersection calculation to per-vertex basis on the given 
surfaces. At surface points other than vertices, the result 
is interpolated in the image space. The proposed method 
covers simple and moderately curved surfaces but it can 
be extended for large and complex surfaces.  

This paper contributes to the application fields that 

require some reflection or refraction accuracy, rather 
than games and entertainment in which environment or 
cube mapping suffice. For example, automobile 
designers need to check the reflecting image on the rear-
view mirror under design and are forced to use ray 
tracing. Our method enables them to verify the 
reflection/refraction result in real-time.  
 

2. PREVIOUS WORK 
 
A common technique to simulate accurate reflection is 
ray tracing [1], which has a drawback in slow 
processing speed. A number of methods to accelerate 
ray tracing have been proposed in the past [2][3][4]. 
Even with the current CPU performance, however, real-
time rendering is difficult to achieve for data sizes of 
practical use. 

Environment mapping [5][6] and cube mapping [7] 
are popular techniques to mimic reflection or refraction. 
Since they can be implemented in graphics hardware, 
real-time processing is possible even when the maps are 
dynamically rendered.  

A major problem of these real-time techniques is 
their accuracy for reflection of local objects. As a 
solution to this issue, Hakura et al. [8][9] presented 
parameterized environment mapping (PEM). It pre-
renders with ray tracing multiple environment maps or 
cube maps from different sample viewpoints around the 
reflector object, creating layered maps for both distant 
and local environment to be synthesized using the alpha 
channel. They showed that the results of PEM are very 
similar to those of ray tracing. While PEM is effective 
when viewing a static or rotating object [10] or when 
the viewpoint rotates around a target object, it requires 
vast amount of pre-computation when the object rapidly 
moves through the environment.  

To compensate the local reflection errors more 
generally, distance impostors have been proposed 
recently [11][12][13]. They use the depth information of 
the environment map and calculate more accurate 
reflection/refraction by iterating and converging toward 
the true ray-scene intersections. The accuracy of their 
methods highly depends on the structure of the reflected 
objects in the environment. For large planar objects 
distance imposters easily find the accurate ray-object 
intersection. However, if an object size is small or its 
depth largely fluctuates, i.e. its surface is irregular, the 
iteration process can fail to find a more accurate 
intersection.  

Our proposed method computes accurate ray-scene 



intersection for each vertex of the reflectors/refractors. 
While there is a performance penalty compared to 
distance impostors, our method computes accurate 
reflection at each vertex. The performance issue could 
potentially be improved by combining our method with 
recent acceleration methods for ray-scene interaction 
[14][15][16]. By using sufficient number of vertices the 
result becomes practically as accurate as ray tracing 
while still keeping interactive frame rates. 

A different approach for real-time reflection was 
introduced by Ofek et al. [17]. Their system deforms the 
reflected 3D objects according to the shape of the mirror 
surface. Since the computational complexity of their 
method is greater than the dynamic environment 
mapping techniques, it is not suitable for scenes with 
large data sets and even less suitable for more accurate 
reflection.  

For refraction, Ohbuchi [18] realized a real-time 
method using refraction vectors but his method fails to 
use optimal viewpoint for the refraction map and cannot 
be applied to reflection. A couple of other real-time 
refraction techniques were introduced [19][20] but they 
are limited to refraction for distant objects. Our method 
handles refraction of both local and distant objects, 
maintaining the accuracy of the result at each vertex on 
the refracting mesh.  

3. PER-VERTEX REFLECTION 
 
This section describes the algorithm of the proposed 
method, per-vertex reflection and refraction (PVRR), 
focusing on the reflection on a single, convex surface. 
Our proposed PVRR method assumes that the reflective 
or refractive objects are polygonal mesh surfaces. This 
section focuses on a moderately curved surface as a 
target. Section 4 will describe how to cope with 
complex surfaces. Figure 1 presents a sample result of 
PVRR compared with a standard cube mapping method. 
 
3.1. Overview of the process 
 
The process of PVRR is similar to that of cube mapping. 
In the first pass, the system renders an image which will 
be mapped to the surface of the reflector. The second 
pass renders the surface using the first pass result as a 
texture, which we call a reflection map in this context.  

The basic idea of PVRR is that it warps the 
reflection map so that each vertex reflects the accurate 
scene intersection point of its reflection ray. 

An overview of the algorithm carried out within a 
frame is shown in Figure 2 and described as follows 
using the same annotation number for each step. In the 
current implementation, no customized shader programs 
were used.  

 
 (1) From a given original viewpoint and the normal 

vectors of the mirror (reflective object), find a 
reflection ray from each vertex of the mirror. 

 (2) Find a virtual viewpoint, define a view volume, 
and render an intermediate image to be used as a 
reflection map (1st pass). 

 (3) For each vertex V of the reflective objects, 
generate texture coordinates as follows. 

(3.1) Trace the extension of the reflection ray from V 
to find the nearest 3D intersection P with the 
scene. 

(3.2) Find the line l that connects P and the virtual 
viewpoint. 

(3.3) Find the point Q where the line l intersects with 
the projection plane for the reflection map. 

(3.4) Copy the local image coordinates of Q in the 
reflection map to the texture coordinates of the 
relevant vertex V. 

(4) Render the scene and the mirror from the original 
viewpoint (2nd pass). 

 
3.2. Finding virtual viewpoints 
 
In ray tracing, intersection tests and rendering are 
carried out on a per-pixel basis. In our proposed method, 
an intersection calculation occurs for each vertex of the 
reflector and the rendering is carried out only once for a 
reflector object on the 1st pass. To minimize the image 
discrepancy, the 1st pass viewpoint which we call the 
virtual viewpoint should be close to every reflection ray 
from the reflector.  

 
Figure 1. Left: A result of per-vertex reflection. Right: 
A cube mapping result as a reference. 
The reflected red balls are placed at the exact 
intersections between the reflection rays from the 
mirror vertices (cross points of the white wireframe 
mesh) and the scene. Note that in per-vertex reflection 
every mirror vertex accurately reflects the 
intersection between its reflection ray and the scene. 
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Figure 2. The processing steps of per-vertex 
reflection.  



We used a least-square method to find the virtual 
viewpoint which should be as close to all extended lines 
of the reflection rays as possible. The square distance 
from a point to each line is summed up as an evaluation 
function. Finding the point which minimizes the square 
distances is a similar problem to finding the straight line 
that best represents the correlated distribution of given 
points.  

Figure 3 is an example of a virtual viewpoint found 
from a given original viewpoint and a meshed mirror. 
 
3.3. Defining a view volume 
 
Once the virtual viewpoint is found, it is a simple 
process to determine a view volume, or a view frustum, 
for rendering the 1st pass reflection map image. The 
frustum should contain all reflection lines between the 
near and far clipping planes. Figure 4 is a 2D 
illustration of such a view frustum.  

First, a viewing direction is defined by averaging 
the reflection ray directions. Second, the near clipping 
plane is placed just in front of the mirror object. This 
will exclude the mirror itself from the view frustum and 
will make the objects before the mirror to be contained 
in the view frustum. Then the far clipping plane is set at 
a sufficient distance from the virtual viewpoint, to 
contain the whole scene in the viewing direction. Then 
the other four boundaries, upper, lower, left, and right, 
are determined so that the frustum contains all reflection 
line segments between the near and far clipping planes.  

Using the above view frustum, the system renders a 
reflection map and transfers the image to the texture 
memory.  
 
3.4. Assignment of texture coordinates 
 
Since the algorithm uses a single image (1st pass result) 
viewed from the best viewpoint for the reflection texture, 
mapping an accurate reflected image is equivalent to 

warping the image appropriately. The texture mapping 
hardware warps the image and the problem is equivalent 
to computing appropriate texture coordinates for each 
vertex of the reflector.  

The process of texture coordinates computation has 
been described in step (3) in Section 3.1 and in Figure 2. 
The heart of the algorithm is to find the 3D intersection 
point P between the reflection ray and the scene (step 
3.1). The rest of the process is to warp the 1st pass 
image so that the relevant vertex V accurately 
corresponds to P in the image.  

The 1st pass image can be regarded as has been 
projected onto the near clipping plane in Figure 2. In 
this context P should have obviously been rendered at 
the point Q on the image. Q can be texture-mapped onto 
the relevant vertex V by simply assigning Q’s 
normalized local image coordinates (s, t) as the texture 
coordinates of V, where [ ]1,0, ∈ts . 

With the above process this algorithm guarantees 
that the mirror reflects the accurate reflection point P at 
its vertex V.  

With the texture coordinate generation step, the 
most time-consuming sub-step is the ray-scene 
intersection (step 3.1). Our method should be able to 
combine most ray-scene intersection acceleration 
techniques including recent work such as kd trees [14], 
Bounding Volume Hierarchy [15], and vertex culling 
[16]. Many other classical acceleration methods are 
surveyed in a book [21].  

In our implementation, we used a scene graph 
toolkit OpenGL Performer [22]. The toolkit uses an 
optimized ray-scene intersection routine with a 
bounding sphere for each node in the hierarchical tree-
structured scene graph.  
 
3.5. NURBS models as reflectors 
 
We applied the method to a tessellated NURBS surface 
model for a prototype mirror exported from a CAD 
system. Figure 5 shows its reflection results.  
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Figure 4.  The view volume for the 1st pass rendering.

 
 

 
Figure 3. A top view and a side view of a curved 
mirror (center), its extended reflection lines (yellow 
and light-blue), rays (blue) from the original 
viewpoint (back in the side window), and the virtual 
viewpoint (red ball) found by the least-squares 
method. 
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Figure 6. Adaptive subdivision of a complex 
surface, which may be needed for future extension 
of PVRR. 

 
4. VARIATIONS OF PER-VERTEX REFLECTION 

AND REFRACTION 
 
This section describes the extensibility of the PVRR 
method and indicates, by showing sample results, that 
the method can cover many of the general features of 
standard ray tracing.  
 
4.1. Reflection image continuity between two 
surfaces 
 
Our proposed per-vertex reflection handles moderately 
curved surfaces in order to avoid resolution degrading 
or distorted images. This will be a limitation when we 
apply this technique to a large, extended reflector or 
refractor. Such a shape contains vertices of greater 
distributions of positions and normal vectors. Since 
some reflection rays may point in significantly different 
directions from others in these cases, using a single 
common virtual viewpoint would easily cause a badly 
formed view volume and the reflection image may be 
severely distorted.  

To handle such extended reflective/refractive 
surfaces, one may need to subdivide the surface into a 
set of moderately curved surfaces, as illustrated in 
Figure 6, until the field-of-view angle of each view 
volume falls below a certain threshold. This paper 
leaves the problem of adaptively subdividing large 
surfaces for future work.  

Here, we focus on a necessary condition for the 
correct subdivision result: the continuity of reflected 
images between two adjacent mesh surfaces which have 
separate virtual viewpoints and view volumes. If the two 
meshes share vertices on their boundary, the two 
adjacent reflected images will be somehow continuous 
at the vertices since the reflected result at each vertex 
should have been shared between the two images by the 
nature of per-vertex reflection. A thorough analysis of 
the image continuity is a future subject.  

Figure 7 demonstrates a simple example of two 
subdivided mirrors, expressing little discontinuity along 
the boundary of the reflected images.  
 
4.2. Reflection on concave surfaces 
 

Per-vertex reflection can be naturally extended to 
reflection with concave mirrors. Figure 8 shows how a 
virtual viewpoint is defined in such cases.  

With the current implementation, we simply ignore 
the “zooming region” where local objects are very much 
expanded when reflected. Figure 9 presents a series of 
mirror reflection results arranged from convex mirror 
surfaces, through almost flat, then to concave surfaces 
(using the reversed region reflection map described in 
Figure 8(b)).  
 
4.3. Reflection on a surface with complex curvatures 
 
Saddle shape surfaces are the most difficult type of 
object as reflectors for our method. It cannot be 

(a) Reflections on two separate, adjacent mirror surfaces 
sharing 7 vertices

(b) The left mirror surface (c) The right mirror surface

(a) Reflections on two separate, adjacent mirror surfaces 
sharing 7 vertices

(b) The left mirror surface (c) The right mirror surface

Figure 7. Reflection image continuity between two 
subdivided polygonal surfaces. Each surface has its 
own virtual viewpoint, rendering pass, and reflection 
texture.  

     

Figure 5. Results using a NURBS model of a 
prototype door mirror with two different mirror 
angles. 
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Figure 10.  Defining a view volume for a shape with 
complex curvatures such as saddle and cylindrical 
shapes. Instead of showing the whole view volume, 
we show only its near clipping plane here. 

decomposed into a set of moderately curved surfaces. In 
those cases our algorithm would not cause a fatal error 
but the concave reflection image might be expanded so 
much that the quality of the reflection would be 

degraded. This is because the view volume is 
conservatively built to contain all reflection rays 
including the convex reflection rays, and the field-of-
view angle tends to be too wide for the concave 
reflection.  

A similar problem should be expected for 
cylindrical surfaces although the quality loss may be 
more moderate.  

A solution to this problem would be to align the up 
vector of the 1st pass view volume to one of the two 
principal directions of the reflective saddle or 
cylindrical surface. Since the principal directions are 
perpendicular to each other, the direction along which 
rays exhibit the widest angular distribution, tends to be 
perpendicular to the direction with the narrowest 
reflection ray angular distribution. By aligning the up 
vector to a principal direction, the aspect ratio of the 
view volume could be optimized for the reflection ray 
distribution. As a result, the distortion of the reflection 
map should be minimized.  

Figure 10 illustrates a case that the up vector (a red 
arrow at the bottom-left corner) is aligned to the 
minimum (most concave) curvature direction (another 
red arrow at the center of the surface).  

In this case the reflection rays along the most 
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(b) Zooming and reverse reflection by a concave mirror 
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Figure 8. Reflection rays and the virtual viewpoints 
for a concave mirror, a concave lens, and a convex 
lens.  
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Figure 9. Examples of a transition from convex reflection to concave (from top-left to top-right and then from 
bottom-right to bottom-left) using a polygon-meshed spherical surface. R is the radius of the curvature. It is 
negative when the curve is concave.  



convex direction should tend to have a wide range of 
angular distribution and they are contained by defining a 
wide field-of-view (FOV) of horizontal direction. The 
rays along the most concave direction tend to have a 
narrow distribution of their angles, and are contained by 
a small FOV in the vertical direction of the view volume.  
 
4.4. Multiple reflection 
 
Multiple reflection and/or refraction can be carried out 
by simply placing two or more such objects at 
appropriate positions and directions. Its rendering 
process is recursive, which is similar to ray tracing. A 
ray tracing recursive process targets microscopic 
granularity; it manages ray hit points and brightness on 
a per-pixel basis. On the other hand, multiple PVRR 
should maintain surfaces and texture maps in a stack 
data structure for the recursion.  

A multiple reflection example is shown in Figure 11. 
A background scene is first reflected in the side 
windows of the car model and then in the mirror.  
 
4.5. Refraction 
 
The per-vertex reflection method can be naturally 
extended to refraction. We developed a lens simulator 
using this method. Figure 12 presents sample results of 
refraction for simple spectacle lenses. For each ray from 
the original viewpoint to a vertex on the lens front face, 
the refracted rays are calculated twice; first at the front 
face vertex and then at a point on the back surface.  

Figure 13 shows another convex-lens refraction 
example with a much greater distance between the 
viewpoint and the lens than the previous example. As 
with real magnifying glasses, the image is reversed 
when the lens is far from the eye.  

Figure 14 demonstrates the double refraction 
accuracy at each vertex on the lens surface. In the 
wireframe portion of the enlarged image (right), the 
refracted red small balls at the accurate ray-scene 
intersections match the vertices of the lens.  

Figure 15 is a color aberration simulation for a 
convex lens. The lens surface is rendered three times 
while recalculating all the texture coordinates (step 3 in 
Section 3.1) with different refraction indices for red, 
green, and blue, and also controlling color masks for red, 

Figure 14.  Refraction by a concave lens. The red tiny 
balls in the enlarged image had been placed at the 
3D intersections between double refracted rays and 
the scene. Note that refracted balls match the vertices 
of the lens. This means that the refraction image is 
accurate at each vertex of the lens. 

Figure 15.  Simulation of color aberration of a convex 
lens. Three refraction indices were used for red 
(1.60), green (1.61), and blue (1.62). 

Figure 12. Examples of per-vertex refraction using a 
convex lens model (left) and a concave lens model 
(right). 

 
Figure 11.  A multiple reflection example. 

 
Figure 13. A reversed image example with convex lens 
refraction (right). The distance from the viewpoint to 
the lens is set to be 76cm in contrast to 7cm and 6cm 
for Figure 12 examples.  



green and blue. The 1st pass image for the lens texture 
is shared by the three lens-rendering tasks.  
 

5. PERFORMANCE 
 
Most scenes introduced in this paper ran in real-time or 
interactive frame rates. Most of the reflection examples 
using the car and the town models (total 10,000 
polygons) ran in 140-170fps with NVIDIA GeForce 
8800 Ultra and 2.66GHz Intel Core 2 Quad. A multiple 
reflection example (Figure 11) was 70-90fps.  

The refraction examples in Figures 12, 13 and 14 
ran at 8-10fps. With an assumption that the lens position 
relative to the eye (the original viewpoint) is fixed, we 
can skip updating the refraction vectors and the virtual 
viewpoint. In this case the frame rate goes up to 70-
80fps without color aberration. With color aberration it 
ran at 30-35fps (Figure 15). The lens model (both front 
and back surfaces) has 2,000 triangles and the rest of the 
scene has 5,000 triangles.  

The most time-consuming process is searching ray-
scene intersection for each reflector/refractor vertex 
(step (3.1) in Section 3.1). Thus the number of ray-
issuing vertices affects the performance. In the car 
mirror examples, the mirror was tessellated into 49 
vertices to obtain desired quality (see Figure 1 left). On 
the other hand, in our lens refraction examples, we used 
lens models with 500-1000 ray-issuing vertices for 
sufficient quality. This is why our lens refraction is 
slower than the mirror reflection. However, the 
assumption described in the previous paragraph is 
acceptable for most lens simulation and real-time results 
are easily achievable.  

The snapshots in this paper have been taken with 
hardware antialiasing. In the meantime however, in 
measuring frame rates, hardware antialiasing was turned 
off because current hardware antialiasing leads to 
performance loss of 30% to 60%. A common solution is 
to switch off antialiasing in interactive operations and to 
switch it on when the scene is still.  
 

6. DISCUSSION 
 
A limitation of the proposed method is that the quality is 
affected by the layout of the vertices of the reflecting or 
refracting objects. For example, it is difficult to apply 
this method to reflective models defined by sparse 
vertices such as a large quadrilateral. The users may 
need to preprocess such geometry by tessellating into a 
polygonal mesh with a sufficient number of vertices.  

Another limitation is a potential inconsistency of 
scene occlusion. This is the case that some object which 
is not hit by the reflection ray, resides on a line 
connecting the virtual viewpoint and the intersection of 
the reflection line with the 3D scene. Figure 16 
illustrates such a case. In this example, the car model 
will be reflected at a vertex in the mirror, which is 
incorrect because the reflection ray from the vertex does 
not intersect with the car. The reason for this is that the 

virtual viewpoint does not reside on the extended lines 
of the reflection rays in general (it does for planar 
reflection). In other words, the viewing direction for the 
virtual viewpoint is different from those of the reflection 
rays.  

This occlusion inconsistency problem is impossible 
to avoid unless the mirror is planar. However, its 
possibility should be minimized by selecting the virtual 
viewpoint as close as each reflection ray using the least-
squares method described in Section 3.2.  
 

7. CONCLUSION AND FUTURE WORK 
 
This paper proposes a per-vertex reflection and 
refraction method. It has the following advantages.  
Performance: Runs in real-time, or in interactive rates. 
Scalable accuracy: Guarantees the accurate direction to 
be reflected at each vertex of the reflector. More 
precisely tessellated surfaces would result in image 
quality closer to that of ray tracing. 
Quality: The reflection map can be high in resolution 
and low in distortion in handling a moderately curved 
surface. 
Continuity: The reflected images are continuous at the 
shared vertices between adjacent mesh surfaces. 
Extensibility: Concave reflection, multiple reflection, 
and refraction are possible in the same framework. 

Because of its scalable accuracy, our method is 
suitable for engineering simulation fields rather than 
games and entertainment, in which dynamic cube 
mapping or distance impostors should be sufficient 
because they produce plausible results.  

Our future work includes adaptive surface 
subdivision as already mentioned in Section 4.1, and 
concave reflection or convex refraction of zooming 
region as shown in Figures 8 (b)(d). In order to render 
the zooming region, where the viewing direction goes 
back toward the mirror or the lens, the system needs to 
reverse the evaluation function of the depth buffer [23]. 
This will make the farther polygons from the virtual 
viewpoint occlude closer polygons, resulting in a correct 
depth order from the mirror or the lens.  

Since the most time-consuming task is to find ray-
scene intersections, it is worthwhile to implement recent 
acceleration techniques [14][15][16] from the ray 
tracing community as well as to adopt multi-core CPUs. 
A GPU implementation of a ray-scene intersection 
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Figure 16. A case in which an occlusion 
inconsistency occurs in a reflection example. 



calculation or other sub-tasks may be a valuable subject 
to pursue as we currently do not utilize any customized 
shader programs.  
 

ACKNOWLEDGMENTS 
 

The authors would like to thank the anonymous 
reviewers for their valuable comments. We also thank 
several people from SGI Japan; Naoya Hirai and Masaki 
Sawai for modeling interior and writing a lens model 
generator, Tomofumi Teratani for making IEVC2007 
demo movies, and Gordon Jolley for proofreading the 
draft of this paper.  
 

REFERENCES 
 

[1] T. Whitted, “An Improved Illumination Model for Shaded 
Display,” Communications of the ACM 23(6), pp. 343–
349, 1980.  

 
[2] A.S. Glassner, “Space subdivision for fast ray tracing,” 

IEEE CG&A, 4(10), pp. 15-22, 1984.  
 
[3] P.S. Heckbert, and P. Hanrahan, “Beam tracing polygonal 

objects,” Proc. SIGGRAPH ’84, pp. 119–127, 1984.  
 
[4] J. Erickson, “Plücker Coordinates,” Ray Tracing News, 

10(3), http://www.acm.org/tog/resources/RTNews/html/ 
rtnv10n3.html#art11, 1997. 

 
[5] J. F. Blinn, and M.E. Newell, “Texture and reflection in 

computer generated images,” Communications of the 
ACM 19(10), pp. 542-547, 1976.  

 
[6] P. Haeberli, and M. Segal, “Texture Mapping as a 

Fundamental Drawing Primitive,” Proc. Fourth 
Eurographics Workshop on Rendering, pp. 259-266, 1993. 

 
[7] D. Voorhies, and J. Foran, “Reflection vector shading 

hardware,” Proc. SIGGRAPH ’94, pp. 163-166, 1994.  
 
[8] Z.S. Hakura, and J. Snyder, “Realistic reflections and 

refractions on graphics hardware with hybrid rendering 
and layered environment maps,” Proc. Eurographics 
Workshop on Rendering, 2001.  

 
[9] Z.S. Hakura, J. Snyder, and J.E. Lengyel, “Parameterized 

environment maps,” SI3D ’01: Proc. 2001 symposium on 
Interactive 3D graphics, pp. 203-208, 2001.  

 
[10] M.M. Stark, and R.F. Riesenfeld, “Reflected and 

transmitted irradiance from area sources using vertex 
tracing,” Proc. Eurographics workshop on Rendering, 
2001.  

 
 

[11] L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, M. Premecz, 
“Approximate Ray-Tracing on the GPU with Distance 
Impostors,” Computer Graphics Forum (Proc. 
Eurographics 2005) 24(3), pp. 685-704, 2005. 

 
[12] V. Popescu, C. Mei, J. Dauble, and E. Sacks, “Reflected-

Scene Impostors for Realistic Reflections at Interactive 
Rates,” Computer Graphics Forum (Proc. Eurographics 
2006) 25(3), pp. 313-322, 2006. 

 
[13] D. Roger, and N. Holzschuch, “Accurate Specular 

Reflections in Real-Time,” Computer Graphics Forum 
(Proc. Eurographics 2006) 25(3), pp. 293-302, 2006. 

 
[14] I. Wald and V. Havran, “On building fast kd-trees for ray 

tracing, and on doing that in O(N log N),” Proc 2006 
IEEE Symposium on Interactive Ray Tracing, pp. 61–69, 
2006. 

 
[15] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing 

Deformable Scenes using Dynamic Bounding Volume 
Hierarchies,” ACM Transactions on Graphics. 26(1), pp. 
1-18, 2007. 

 
[16] A. Reshetov, “Faster Ray Packets - Triangle Intersection 

through Vertex Culling,” Proc. Synposium on Interactive 
Ray Tracing, 2007. 

 
[17] E. Ofek, and A. Rappoport, “Interactive reflections on 

curved objects,” Proc. SIGGRAPH ’98, pp. 333-342, 
1998.  

 
[18] E. Ohbuchi, “A real-time refraction renderer for volume 

objects using a polygon-rendering scheme,” Proc. 
Computer Graphics International 2003 (CGI’03), pp. 
190-195, 2003.  

 
[19] E. Lindholm, M. Kilgard, and H. Moreton, “A user 

programmable vertex engine,” Proc. SIGGRAPH 2001, 
pp. 149-158, 2001.  

 
[20] C. Wyman, “An approximate image-space approach for 

interactive refraction,” Proc. SIGGRAPH 2005, pp. 1050-
1053, 2005.  

 
[21] A. Glassner, “An Introduction to Raytracing,” Academic 

Press, 1989. 
 
[22] J. Rohlf, J. Helman, “IRIS performer: a high performance 

multiprocessing toolkit for real-time 3D graphics,” Proc. 
SIGGRAPH ’94, pp. 381-394, 1994.  

 
[23] S. Vallance, P. Calder, “Inward looking projections,” 

Proc. GRAPHITE ’03, pp. 219-222, 2003.  
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


