
REAL-TIME REFLECTION AND REFRACTION ON A PER-VERTEX BASIS

Masanori Kakimoto1) Tomoaki Tatsukawa1) Geng Chun1) Tomoyuki Nishita2)

1) SGI Japan, Ltd. 2) The University of Tokyo

ABSTRACT

This paper proposes a novel method for real-time
rendering of polygon mesh surfaces with reflection or
refraction. The basic process is similar to dynamic
environment mapping or cube mapping. Our proposed
method is superior to those in that the accurate ray
direction is reflected in the resulted image at every
vertex on the mesh. Existing real-time techniques suffer
from the differences between the viewpoint for the
environment map and each reflection point. The
proposed method minimizes this by finding an optimal
viewpoint for the reflective or refractive mesh. With a
sufficient number of vertices and map image resolutions,
the users can render reflected images as accurate as ray
tracing for all practical purposes, except for reflected
objects around ray converging points of reflection on
concave surfaces or refraction through convex lenses.
The method can be applied to areas which require
accuracy such as industrial design. Experiments with a
CAD model of a car rear-view mirror and spectacle
lenses exhibited results of sufficient quality for design
verification.

1. INTRODUCTION

Reflection and refraction are essential elements of
realistic image generation. Ray tracing [1] is a common
rendering technique to simulate reflection or refraction.
Although environment mapping and its variations are
used for fast rendering of these effects, these techniques
are effective for games and some concept design
applications in which the users require only plausible
reflection or refraction. In contrast, for simulation
oriented applications such as mirror or lens design, ray
tracing has been mandatory because of its accuracy.
While acceleration techniques of ray tracing have been
investigated from various standpoints, real-time
rendering is still difficult to achieve for scenes of
particularly large data sets.

Our method provides a solution to real-time, high
quality reflection/refraction by limiting the ray-object
intersection calculation to per-vertex basis on the given
surfaces. At surface points other than vertices, the result
is interpolated in the image space. The proposed method
covers simple and moderately curved surfaces but it can
be extended for large and complex surfaces.

This paper contributes to the application fields that

require some reflection or refraction accuracy, rather
than games and entertainment in which environment or
cube mapping suffice. For example, automobile
designers need to check the reflecting image on the rear-
view mirror under design and are forced to use ray
tracing. Our method enables them to verify the
reflection/refraction result in real-time.

2. PREVIOUS WORK

A common technique to simulate accurate reflection is
ray tracing [1], which has a drawback in slow
processing speed. A number of methods to accelerate
ray tracing have been proposed in the past [2][3][4].
Even with the current CPU performance, however, real-
time rendering is difficult to achieve for data sizes of
practical use.

Environment mapping [5][6] and cube mapping [7]
are popular techniques to mimic reflection or refraction.
Since they can be implemented in graphics hardware,
real-time processing is possible even when the maps are
dynamically rendered.

A major problem of these real-time techniques is
their accuracy for reflection of local objects. As a
solution to this issue, Hakura et al. [8][9] presented
parameterized environment mapping (PEM). It pre-
renders with ray tracing multiple environment maps or
cube maps from different sample viewpoints around the
reflector object, creating layered maps for both distant
and local environment to be synthesized using the alpha
channel. They showed that the results of PEM are very
similar to those of ray tracing. While PEM is effective
when viewing a static or rotating object [10] or when
the viewpoint rotates around a target object, it requires
vast amount of pre-computation when the object rapidly
moves through the environment.

To compensate the local reflection errors more
generally, distance impostors have been proposed
recently [11][12][13]. They use the depth information of
the environment map and calculate more accurate
reflection/refraction by iterating and converging toward
the true ray-scene intersections. The accuracy of their
methods highly depends on the structure of the reflected
objects in the environment. For large planar objects
distance imposters easily find the accurate ray-object
intersection. However, if an object size is small or its
depth largely fluctuates, i.e. its surface is irregular, the
iteration process can fail to find a more accurate
intersection.

Our proposed method computes accurate ray-scene

intersection for each vertex of the reflectors/refractors.
While there is a performance penalty compared to
distance impostors, our method computes accurate
reflection at each vertex. The performance issue could
potentially be improved by combining our method with
recent acceleration methods for ray-scene interaction
[14][15][16]. By using sufficient number of vertices the
result becomes practically as accurate as ray tracing
while still keeping interactive frame rates.

A different approach for real-time reflection was
introduced by Ofek et al. [17]. Their system deforms the
reflected 3D objects according to the shape of the mirror
surface. Since the computational complexity of their
method is greater than the dynamic environment
mapping techniques, it is not suitable for scenes with
large data sets and even less suitable for more accurate
reflection.

For refraction, Ohbuchi [18] realized a real-time
method using refraction vectors but his method fails to
use optimal viewpoint for the refraction map and cannot
be applied to reflection. A couple of other real-time
refraction techniques were introduced [19][20] but they
are limited to refraction for distant objects. Our method
handles refraction of both local and distant objects,
maintaining the accuracy of the result at each vertex on
the refracting mesh.

3. PER-VERTEX REFLECTION

This section describes the algorithm of the proposed
method, per-vertex reflection and refraction (PVRR),
focusing on the reflection on a single, convex surface.
Our proposed PVRR method assumes that the reflective
or refractive objects are polygonal mesh surfaces. This
section focuses on a moderately curved surface as a
target. Section 4 will describe how to cope with
complex surfaces. Figure 1 presents a sample result of
PVRR compared with a standard cube mapping method.

3.1. Overview of the process

The process of PVRR is similar to that of cube mapping.
In the first pass, the system renders an image which will
be mapped to the surface of the reflector. The second
pass renders the surface using the first pass result as a
texture, which we call a reflection map in this context.

The basic idea of PVRR is that it warps the
reflection map so that each vertex reflects the accurate
scene intersection point of its reflection ray.

An overview of the algorithm carried out within a
frame is shown in Figure 2 and described as follows
using the same annotation number for each step. In the
current implementation, no customized shader programs
were used.

 (1) From a given original viewpoint and the normal

vectors of the mirror (reflective object), find a
reflection ray from each vertex of the mirror.

 (2) Find a virtual viewpoint, define a view volume,
and render an intermediate image to be used as a
reflection map (1st pass).

 (3) For each vertex V of the reflective objects,
generate texture coordinates as follows.

(3.1) Trace the extension of the reflection ray from V
to find the nearest 3D intersection P with the
scene.

(3.2) Find the line l that connects P and the virtual
viewpoint.

(3.3) Find the point Q where the line l intersects with
the projection plane for the reflection map.

(3.4) Copy the local image coordinates of Q in the
reflection map to the texture coordinates of the
relevant vertex V.

(4) Render the scene and the mirror from the original
viewpoint (2nd pass).

3.2. Finding virtual viewpoints

In ray tracing, intersection tests and rendering are
carried out on a per-pixel basis. In our proposed method,
an intersection calculation occurs for each vertex of the
reflector and the rendering is carried out only once for a
reflector object on the 1st pass. To minimize the image
discrepancy, the 1st pass viewpoint which we call the
virtual viewpoint should be close to every reflection ray
from the reflector.

Figure 1. Left: A result of per-vertex reflection. Right:
A cube mapping result as a reference.
The reflected red balls are placed at the exact
intersections between the reflection rays from the
mirror vertices (cross points of the white wireframe
mesh) and the scene. Note that in per-vertex reflection
every mirror vertex accurately reflects the
intersection between its reflection ray and the scene.

(2)

Mirror

(1)

Near clipping
(projection) plane for
the reflection map

(3.1)

(3.3) (3.4)

(4)

(3.2)
Virtual

viewpoint

Vertex

Original viewpoint

Q
P

l
V

(2)

Mirror

(1)

Near clipping
(projection) plane for
the reflection map

(3.1)

(3.3) (3.4)

(4)

(3.2)
Virtual

viewpoint

Vertex

Original viewpoint

Q
P

l
V

Figure 2. The processing steps of per-vertex
reflection.

We used a least-square method to find the virtual
viewpoint which should be as close to all extended lines
of the reflection rays as possible. The square distance
from a point to each line is summed up as an evaluation
function. Finding the point which minimizes the square
distances is a similar problem to finding the straight line
that best represents the correlated distribution of given
points.

Figure 3 is an example of a virtual viewpoint found
from a given original viewpoint and a meshed mirror.

3.3. Defining a view volume

Once the virtual viewpoint is found, it is a simple
process to determine a view volume, or a view frustum,
for rendering the 1st pass reflection map image. The
frustum should contain all reflection lines between the
near and far clipping planes. Figure 4 is a 2D
illustration of such a view frustum.

First, a viewing direction is defined by averaging
the reflection ray directions. Second, the near clipping
plane is placed just in front of the mirror object. This
will exclude the mirror itself from the view frustum and
will make the objects before the mirror to be contained
in the view frustum. Then the far clipping plane is set at
a sufficient distance from the virtual viewpoint, to
contain the whole scene in the viewing direction. Then
the other four boundaries, upper, lower, left, and right,
are determined so that the frustum contains all reflection
line segments between the near and far clipping planes.

Using the above view frustum, the system renders a
reflection map and transfers the image to the texture
memory.

3.4. Assignment of texture coordinates

Since the algorithm uses a single image (1st pass result)
viewed from the best viewpoint for the reflection texture,
mapping an accurate reflected image is equivalent to

warping the image appropriately. The texture mapping
hardware warps the image and the problem is equivalent
to computing appropriate texture coordinates for each
vertex of the reflector.

The process of texture coordinates computation has
been described in step (3) in Section 3.1 and in Figure 2.
The heart of the algorithm is to find the 3D intersection
point P between the reflection ray and the scene (step
3.1). The rest of the process is to warp the 1st pass
image so that the relevant vertex V accurately
corresponds to P in the image.

The 1st pass image can be regarded as has been
projected onto the near clipping plane in Figure 2. In
this context P should have obviously been rendered at
the point Q on the image. Q can be texture-mapped onto
the relevant vertex V by simply assigning Q’s
normalized local image coordinates (s, t) as the texture
coordinates of V, where []1,0, ∈ts .

With the above process this algorithm guarantees
that the mirror reflects the accurate reflection point P at
its vertex V.

With the texture coordinate generation step, the
most time-consuming sub-step is the ray-scene
intersection (step 3.1). Our method should be able to
combine most ray-scene intersection acceleration
techniques including recent work such as kd trees [14],
Bounding Volume Hierarchy [15], and vertex culling
[16]. Many other classical acceleration methods are
surveyed in a book [21].

In our implementation, we used a scene graph
toolkit OpenGL Performer [22]. The toolkit uses an
optimized ray-scene intersection routine with a
bounding sphere for each node in the hierarchical tree-
structured scene graph.

3.5. NURBS models as reflectors

We applied the method to a tessellated NURBS surface
model for a prototype mirror exported from a CAD
system. Figure 5 shows its reflection results.

Original viewpoint
(given)

Virtual
viewpoint

Mirror
(given)

Reflection
rays

Near clipping plane
(projection plane)

Right boundary of

the view volum
e

Left boundary of
the view volume

Fa
r c

lip
pi

ng
 pl

an
e

View
volume

Scene
objects
(given)

Original viewpoint
(given)

Virtual
viewpoint

Mirror
(given)

Reflection
rays

Near clipping plane
(projection plane)

Right boundary of

the view volum
e

Left boundary of
the view volume

Fa
r c

lip
pi

ng
 pl

an
e

View
volume

Scene
objects
(given)

Figure 4. The view volume for the 1st pass rendering.

Figure 3. A top view and a side view of a curved
mirror (center), its extended reflection lines (yellow
and light-blue), rays (blue) from the original
viewpoint (back in the side window), and the virtual
viewpoint (red ball) found by the least-squares
method.

Original viewpoint

A complex
reflecting mesh
surface Virtual viewpoints

Reflection rays from
the vertices

Original viewpoint

A complex
reflecting mesh
surface Virtual viewpoints

Reflection rays from
the vertices

Figure 6. Adaptive subdivision of a complex
surface, which may be needed for future extension
of PVRR.

4. VARIATIONS OF PER-VERTEX REFLECTION

AND REFRACTION

This section describes the extensibility of the PVRR
method and indicates, by showing sample results, that
the method can cover many of the general features of
standard ray tracing.

4.1. Reflection image continuity between two
surfaces

Our proposed per-vertex reflection handles moderately
curved surfaces in order to avoid resolution degrading
or distorted images. This will be a limitation when we
apply this technique to a large, extended reflector or
refractor. Such a shape contains vertices of greater
distributions of positions and normal vectors. Since
some reflection rays may point in significantly different
directions from others in these cases, using a single
common virtual viewpoint would easily cause a badly
formed view volume and the reflection image may be
severely distorted.

To handle such extended reflective/refractive
surfaces, one may need to subdivide the surface into a
set of moderately curved surfaces, as illustrated in
Figure 6, until the field-of-view angle of each view
volume falls below a certain threshold. This paper
leaves the problem of adaptively subdividing large
surfaces for future work.

Here, we focus on a necessary condition for the
correct subdivision result: the continuity of reflected
images between two adjacent mesh surfaces which have
separate virtual viewpoints and view volumes. If the two
meshes share vertices on their boundary, the two
adjacent reflected images will be somehow continuous
at the vertices since the reflected result at each vertex
should have been shared between the two images by the
nature of per-vertex reflection. A thorough analysis of
the image continuity is a future subject.

Figure 7 demonstrates a simple example of two
subdivided mirrors, expressing little discontinuity along
the boundary of the reflected images.

4.2. Reflection on concave surfaces

Per-vertex reflection can be naturally extended to
reflection with concave mirrors. Figure 8 shows how a
virtual viewpoint is defined in such cases.

With the current implementation, we simply ignore
the “zooming region” where local objects are very much
expanded when reflected. Figure 9 presents a series of
mirror reflection results arranged from convex mirror
surfaces, through almost flat, then to concave surfaces
(using the reversed region reflection map described in
Figure 8(b)).

4.3. Reflection on a surface with complex curvatures

Saddle shape surfaces are the most difficult type of
object as reflectors for our method. It cannot be

(a) Reflections on two separate, adjacent mirror surfaces
sharing 7 vertices

(b) The left mirror surface (c) The right mirror surface

(a) Reflections on two separate, adjacent mirror surfaces
sharing 7 vertices

(b) The left mirror surface (c) The right mirror surface

Figure 7. Reflection image continuity between two
subdivided polygonal surfaces. Each surface has its
own virtual viewpoint, rendering pass, and reflection
texture.

Figure 5. Results using a NURBS model of a
prototype door mirror with two different mirror
angles.

Near clipping plane

Principal directions
(minimum and maximun curvature directions)

Saddle shape surface

Virtual viewpoint Reflection ray at a corner vertex

Near clipping plane

Principal directions
(minimum and maximun curvature directions)

Saddle shape surface

Virtual viewpoint Reflection ray at a corner vertex

Figure 10. Defining a view volume for a shape with
complex curvatures such as saddle and cylindrical
shapes. Instead of showing the whole view volume,
we show only its near clipping plane here.

decomposed into a set of moderately curved surfaces. In
those cases our algorithm would not cause a fatal error
but the concave reflection image might be expanded so
much that the quality of the reflection would be

degraded. This is because the view volume is
conservatively built to contain all reflection rays
including the convex reflection rays, and the field-of-
view angle tends to be too wide for the concave
reflection.

A similar problem should be expected for
cylindrical surfaces although the quality loss may be
more moderate.

A solution to this problem would be to align the up
vector of the 1st pass view volume to one of the two
principal directions of the reflective saddle or
cylindrical surface. Since the principal directions are
perpendicular to each other, the direction along which
rays exhibit the widest angular distribution, tends to be
perpendicular to the direction with the narrowest
reflection ray angular distribution. By aligning the up
vector to a principal direction, the aspect ratio of the
view volume could be optimized for the reflection ray
distribution. As a result, the distortion of the reflection
map should be minimized.

Figure 10 illustrates a case that the up vector (a red
arrow at the bottom-left corner) is aligned to the
minimum (most concave) curvature direction (another
red arrow at the center of the surface).

In this case the reflection rays along the most

Original viewpoint

Virtual
viewpoint

Reflecting
mesh

Reflection ray

Reflection rayfar near

Original viewpoint

Virtual
viewpoint

Reflecting
mesh

Reflection ray

Reflection rayfar near

(a) Zooming reflection by a concave mirror

Original
viewpoint

Virtual
view-
point Reflect

-ing
mesh

Reflection ray

Reflection ray near far
far

near Zooming
region

Reversed region Original
viewpoint

Virtual
view-
point Reflect

-ing
mesh

Reflection ray

Reflection ray near far
far

near Zooming
region

Reversed region

(b) Zooming and reverse reflection by a concave mirror

Original viewpoint

Virtual viewpoint

Refracting
lens

Refraction ray

Refr
act

ion ray

near farOriginal viewpoint

Virtual viewpoint

Refracting
lens

Refraction ray

Refr
act

ion ray

near far
(c) Zooming refraction by a concave lens

Refraction ray

Original
viewpoint

Refracting
lens Refraction ray

near

far

near

far

Zooming region

Virtual
viewpoint Refraction ray

Original
viewpoint

Refracting
lens Refraction ray

near

far

near

far

Zooming region

Virtual
viewpoint

(d) Zooming and reverse refraction by a convex lens

Figure 8. Reflection rays and the virtual viewpoints
for a concave mirror, a concave lens, and a convex
lens.

R=0.8 R=2.0 R=5.0 R=20.0 R=100.0 R=-100.0 R=-20.0

R=-0.4 R=-0.8 R=-1.2 R=-2.0 R=-2.8 R=-3.4 R=-5.0

R=0.8 R=2.0 R=5.0 R=20.0 R=100.0 R=-100.0 R=-20.0

R=-0.4 R=-0.8 R=-1.2 R=-2.0 R=-2.8 R=-3.4 R=-5.0

Figure 9. Examples of a transition from convex reflection to concave (from top-left to top-right and then from
bottom-right to bottom-left) using a polygon-meshed spherical surface. R is the radius of the curvature. It is
negative when the curve is concave.

convex direction should tend to have a wide range of
angular distribution and they are contained by defining a
wide field-of-view (FOV) of horizontal direction. The
rays along the most concave direction tend to have a
narrow distribution of their angles, and are contained by
a small FOV in the vertical direction of the view volume.

4.4. Multiple reflection

Multiple reflection and/or refraction can be carried out
by simply placing two or more such objects at
appropriate positions and directions. Its rendering
process is recursive, which is similar to ray tracing. A
ray tracing recursive process targets microscopic
granularity; it manages ray hit points and brightness on
a per-pixel basis. On the other hand, multiple PVRR
should maintain surfaces and texture maps in a stack
data structure for the recursion.

A multiple reflection example is shown in Figure 11.
A background scene is first reflected in the side
windows of the car model and then in the mirror.

4.5. Refraction

The per-vertex reflection method can be naturally
extended to refraction. We developed a lens simulator
using this method. Figure 12 presents sample results of
refraction for simple spectacle lenses. For each ray from
the original viewpoint to a vertex on the lens front face,
the refracted rays are calculated twice; first at the front
face vertex and then at a point on the back surface.

Figure 13 shows another convex-lens refraction
example with a much greater distance between the
viewpoint and the lens than the previous example. As
with real magnifying glasses, the image is reversed
when the lens is far from the eye.

Figure 14 demonstrates the double refraction
accuracy at each vertex on the lens surface. In the
wireframe portion of the enlarged image (right), the
refracted red small balls at the accurate ray-scene
intersections match the vertices of the lens.

Figure 15 is a color aberration simulation for a
convex lens. The lens surface is rendered three times
while recalculating all the texture coordinates (step 3 in
Section 3.1) with different refraction indices for red,
green, and blue, and also controlling color masks for red,

Figure 14. Refraction by a concave lens. The red tiny
balls in the enlarged image had been placed at the
3D intersections between double refracted rays and
the scene. Note that refracted balls match the vertices
of the lens. This means that the refraction image is
accurate at each vertex of the lens.

Figure 15. Simulation of color aberration of a convex
lens. Three refraction indices were used for red
(1.60), green (1.61), and blue (1.62).

Figure 12. Examples of per-vertex refraction using a
convex lens model (left) and a concave lens model
(right).

Figure 11. A multiple reflection example.

Figure 13. A reversed image example with convex lens
refraction (right). The distance from the viewpoint to
the lens is set to be 76cm in contrast to 7cm and 6cm
for Figure 12 examples.

green and blue. The 1st pass image for the lens texture
is shared by the three lens-rendering tasks.

5. PERFORMANCE

Most scenes introduced in this paper ran in real-time or
interactive frame rates. Most of the reflection examples
using the car and the town models (total 10,000
polygons) ran in 140-170fps with NVIDIA GeForce
8800 Ultra and 2.66GHz Intel Core 2 Quad. A multiple
reflection example (Figure 11) was 70-90fps.

The refraction examples in Figures 12, 13 and 14
ran at 8-10fps. With an assumption that the lens position
relative to the eye (the original viewpoint) is fixed, we
can skip updating the refraction vectors and the virtual
viewpoint. In this case the frame rate goes up to 70-
80fps without color aberration. With color aberration it
ran at 30-35fps (Figure 15). The lens model (both front
and back surfaces) has 2,000 triangles and the rest of the
scene has 5,000 triangles.

The most time-consuming process is searching ray-
scene intersection for each reflector/refractor vertex
(step (3.1) in Section 3.1). Thus the number of ray-
issuing vertices affects the performance. In the car
mirror examples, the mirror was tessellated into 49
vertices to obtain desired quality (see Figure 1 left). On
the other hand, in our lens refraction examples, we used
lens models with 500-1000 ray-issuing vertices for
sufficient quality. This is why our lens refraction is
slower than the mirror reflection. However, the
assumption described in the previous paragraph is
acceptable for most lens simulation and real-time results
are easily achievable.

The snapshots in this paper have been taken with
hardware antialiasing. In the meantime however, in
measuring frame rates, hardware antialiasing was turned
off because current hardware antialiasing leads to
performance loss of 30% to 60%. A common solution is
to switch off antialiasing in interactive operations and to
switch it on when the scene is still.

6. DISCUSSION

A limitation of the proposed method is that the quality is
affected by the layout of the vertices of the reflecting or
refracting objects. For example, it is difficult to apply
this method to reflective models defined by sparse
vertices such as a large quadrilateral. The users may
need to preprocess such geometry by tessellating into a
polygonal mesh with a sufficient number of vertices.

Another limitation is a potential inconsistency of
scene occlusion. This is the case that some object which
is not hit by the reflection ray, resides on a line
connecting the virtual viewpoint and the intersection of
the reflection line with the 3D scene. Figure 16
illustrates such a case. In this example, the car model
will be reflected at a vertex in the mirror, which is
incorrect because the reflection ray from the vertex does
not intersect with the car. The reason for this is that the

virtual viewpoint does not reside on the extended lines
of the reflection rays in general (it does for planar
reflection). In other words, the viewing direction for the
virtual viewpoint is different from those of the reflection
rays.

This occlusion inconsistency problem is impossible
to avoid unless the mirror is planar. However, its
possibility should be minimized by selecting the virtual
viewpoint as close as each reflection ray using the least-
squares method described in Section 3.2.

7. CONCLUSION AND FUTURE WORK

This paper proposes a per-vertex reflection and
refraction method. It has the following advantages.
Performance: Runs in real-time, or in interactive rates.
Scalable accuracy: Guarantees the accurate direction to
be reflected at each vertex of the reflector. More
precisely tessellated surfaces would result in image
quality closer to that of ray tracing.
Quality: The reflection map can be high in resolution
and low in distortion in handling a moderately curved
surface.
Continuity: The reflected images are continuous at the
shared vertices between adjacent mesh surfaces.
Extensibility: Concave reflection, multiple reflection,
and refraction are possible in the same framework.

Because of its scalable accuracy, our method is
suitable for engineering simulation fields rather than
games and entertainment, in which dynamic cube
mapping or distance impostors should be sufficient
because they produce plausible results.

Our future work includes adaptive surface
subdivision as already mentioned in Section 4.1, and
concave reflection or convex refraction of zooming
region as shown in Figures 8 (b)(d). In order to render
the zooming region, where the viewing direction goes
back toward the mirror or the lens, the system needs to
reverse the evaluation function of the depth buffer [23].
This will make the farther polygons from the virtual
viewpoint occlude closer polygons, resulting in a correct
depth order from the mirror or the lens.

Since the most time-consuming task is to find ray-
scene intersections, it is worthwhile to implement recent
acceleration techniques [14][15][16] from the ray
tracing community as well as to adopt multi-core CPUs.
A GPU implementation of a ray-scene intersection

Mirror Virtual
viewpoint

A vertex

Original viewpoint

Projection plane

Reflection ray

An error-causing occluder

3D intersection

Mirror Virtual
viewpoint

A vertex

Original viewpoint

Projection plane

Reflection ray

An error-causing occluder

3D intersection

Figure 16. A case in which an occlusion
inconsistency occurs in a reflection example.

calculation or other sub-tasks may be a valuable subject
to pursue as we currently do not utilize any customized
shader programs.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous
reviewers for their valuable comments. We also thank
several people from SGI Japan; Naoya Hirai and Masaki
Sawai for modeling interior and writing a lens model
generator, Tomofumi Teratani for making IEVC2007
demo movies, and Gordon Jolley for proofreading the
draft of this paper.

REFERENCES

[1] T. Whitted, “An Improved Illumination Model for Shaded
Display,” Communications of the ACM 23(6), pp. 343–
349, 1980.

[2] A.S. Glassner, “Space subdivision for fast ray tracing,”

IEEE CG&A, 4(10), pp. 15-22, 1984.

[3] P.S. Heckbert, and P. Hanrahan, “Beam tracing polygonal

objects,” Proc. SIGGRAPH ’84, pp. 119–127, 1984.

[4] J. Erickson, “Plücker Coordinates,” Ray Tracing News,

10(3), http://www.acm.org/tog/resources/RTNews/html/
rtnv10n3.html#art11, 1997.

[5] J. F. Blinn, and M.E. Newell, “Texture and reflection in

computer generated images,” Communications of the
ACM 19(10), pp. 542-547, 1976.

[6] P. Haeberli, and M. Segal, “Texture Mapping as a

Fundamental Drawing Primitive,” Proc. Fourth
Eurographics Workshop on Rendering, pp. 259-266, 1993.

[7] D. Voorhies, and J. Foran, “Reflection vector shading

hardware,” Proc. SIGGRAPH ’94, pp. 163-166, 1994.

[8] Z.S. Hakura, and J. Snyder, “Realistic reflections and

refractions on graphics hardware with hybrid rendering
and layered environment maps,” Proc. Eurographics
Workshop on Rendering, 2001.

[9] Z.S. Hakura, J. Snyder, and J.E. Lengyel, “Parameterized

environment maps,” SI3D ’01: Proc. 2001 symposium on
Interactive 3D graphics, pp. 203-208, 2001.

[10] M.M. Stark, and R.F. Riesenfeld, “Reflected and

transmitted irradiance from area sources using vertex
tracing,” Proc. Eurographics workshop on Rendering,
2001.

[11] L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, M. Premecz,
“Approximate Ray-Tracing on the GPU with Distance
Impostors,” Computer Graphics Forum (Proc.
Eurographics 2005) 24(3), pp. 685-704, 2005.

[12] V. Popescu, C. Mei, J. Dauble, and E. Sacks, “Reflected-

Scene Impostors for Realistic Reflections at Interactive
Rates,” Computer Graphics Forum (Proc. Eurographics
2006) 25(3), pp. 313-322, 2006.

[13] D. Roger, and N. Holzschuch, “Accurate Specular

Reflections in Real-Time,” Computer Graphics Forum
(Proc. Eurographics 2006) 25(3), pp. 293-302, 2006.

[14] I. Wald and V. Havran, “On building fast kd-trees for ray

tracing, and on doing that in O(N log N),” Proc 2006
IEEE Symposium on Interactive Ray Tracing, pp. 61–69,
2006.

[15] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing

Deformable Scenes using Dynamic Bounding Volume
Hierarchies,” ACM Transactions on Graphics. 26(1), pp.
1-18, 2007.

[16] A. Reshetov, “Faster Ray Packets - Triangle Intersection

through Vertex Culling,” Proc. Synposium on Interactive
Ray Tracing, 2007.

[17] E. Ofek, and A. Rappoport, “Interactive reflections on

curved objects,” Proc. SIGGRAPH ’98, pp. 333-342,
1998.

[18] E. Ohbuchi, “A real-time refraction renderer for volume

objects using a polygon-rendering scheme,” Proc.
Computer Graphics International 2003 (CGI’03), pp.
190-195, 2003.

[19] E. Lindholm, M. Kilgard, and H. Moreton, “A user

programmable vertex engine,” Proc. SIGGRAPH 2001,
pp. 149-158, 2001.

[20] C. Wyman, “An approximate image-space approach for

interactive refraction,” Proc. SIGGRAPH 2005, pp. 1050-
1053, 2005.

[21] A. Glassner, “An Introduction to Raytracing,” Academic

Press, 1989.

[22] J. Rohlf, J. Helman, “IRIS performer: a high performance

multiprocessing toolkit for real-time 3D graphics,” Proc.
SIGGRAPH ’94, pp. 381-394, 1994.

[23] S. Vallance, P. Calder, “Inward looking projections,”

Proc. GRAPHITE ’03, pp. 219-222, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

