
An interactive system for structure-based ASCII art creation

Katsunori Miyake† Henry Johan‡ Tomoyuki Nishita†

†The University of Tokyo ‡Nanyang Technological University

Abstract
Non-Photorealistic Rendering (NPR), whose aim is to

create artistic style images, is one of the important research
topics in computer graphics. One example of NPR is an art
form called ASCII art which represents pictures using charac-
ter strings. ASCII art is commonly used in media that cannot
display images or mainly use text, such as e-mail and bulletin
board system. ASCII art can be categorized into two styles,
tone-based style and structure-based style. The structure-
based style can represent content by using less number of
ASCII characters compared to the tone-based style. However,
in general, it takes beginners a long time to create structure-
based ASCII art. As such, an automatic method that creates
structure-based ASCII art is required to reduce the tasks of
ASCII art creation.

In this paper, we propose an interactive system which cre-
ates structure-based ASCII art. We provide four matching
metrics for converting an image into an ASCII art.Based on
experimental results, we found that the suitable matching
metrics to produce visually pleasant ASCII art images de-
pend on the type of the input images. Since our system can
produce ASCII art images in a few seconds, users can create
several ASCII art images using different matching metrics,
then select the one they like the most.

1 Introduction

ASCII art is one type of artistic style images. It represents
visual information using character strings which consist of 95
ASCII printable characters. ASCII is a character-encoding
scheme, and is the acronym of American Standard Code for
Information Interchange. ASCII art does not focus on pho-
torealism. ASCII art is a popular art in cyberspace. We can
see many ASCII art in various media which mainly use text,
such as email and BBS on the Web. In Japanese BBS, we
can see many ASCII art that represent outline of animation
characters.

ASCII art can be categorized into two styles, tone-based
style and structure-based style (Figure 1). Tone-based ASCII
art uses the density of glyph to represent the intensity distri-
bution of content. Structure-based ASCII art uses the line of
glyph to represent the line structure of content, and can rep-
resent content by using less number of ASCII characters than
tone-based ASCII art. As a result, structure-based ASCII art
is often used in email and BBS. Most of these ASCII art are
made manually. However, it is difficult for beginners to create
structure-based ASCII art. As such, we propose an interac-
tive system for creating structure-based ASCII art.

(a) Tone-based style (b) Structure-based style

Figure 1: Examples of two styles.

Our ASCII art creation framework consists of a prepro-
cessing step and an ASCII art creation step. In the prepro-
cessing step, we prepare glyph images of ASCII printable
characters by rasterizing an outline font. The glyph images
are of the same size. For ASCII art creation, the input images
of our system are black-and-white images where the back-
ground is white and the content is black. Our system also
allows users to perform drawing. To create the ASCII art im-
age of an input image, we first divide the input image into
grids which are of the same size as the glyph images. We
call these grids as blocks. Then, we perform glyph matching
which is a process of calculating the similarity between the
blocks of the input image and glyph images. For each block,
we put the best matching glyph in it. We perform this process
for every block of the input image.

For block and glyph matching, we apply four matching
metrics. The first one is template matching where we calcu-
late the difference between the values of same position pixels
in the block and glyph image, then we calculate the dissim-
ilarity by using the Sum of Absolute Difference. The sec-
ond metric is normalized cross-correlation where we calcu-
late the similarity between the histograms of the distribution
of black pixels. The third one is Histogram of Oriented Gra-
dients (HOG) where we first determine HOG by calculating
the gradient at each pixel, then we calculate difference be-
tween two HOGs. The last metric is distance transformation
where we calculate the distance transformation image of the
block and measure the distance of the glyph image to the dis-
tance transformed image.

Results of template matching and NCC are good if lines
of input images are thick. Results of HOG can represent line
directions. Results of distance transformation can represent
line positions.

2 Related Work

There are some existing software programs for generating
ASCII art, such as AA-lib [1]. Most of these programs create
the tone-based ASCII art using a half-toning method. This
method represents input images using the line density pattern
of glyphs. Results of AA-lib are similar to half-toning results.
However, AA-lib uses varying brightness font.

O ’Grady and Rickard [2] proposed a method to convert
binary images into tone-based ASCII art using Non-negative
Matrix Factorization. This method which uses Non-negative
Matrix Factorization minimizes the difference between input
images and glyphs in a pixel-by-pixel manner. The computa-
tional cost of this method is high.

Xu et al. [3] presented a method to create structure-based
ASCII art. This method uses alignment-insensitive shape
similarity metric which is similar to shape context, and uses
deformation by adjusting the vertex positions of image poly-
lines. To tolerate misalignment, this method used a histogram
of a log-polar diagram. However, it is high computational
cost to optimize polylines of input image.

3 User Interface

A purpose of our system is the creation of ASCII art from
input images or drawn images by users in real-time. Users
draw an illustration in the left area (Figure 2). Then, our sys-
tem shows the result of ASCII art as text data in the right area.
Users can also change the glyph of the results by choosing
from displayed candidates.

Figure 2: The user interface of the proposed system. The left
area is the drawing area. The right area displays the result
of ASCII art.

4 Matching Method

We describe the outline of glyph matching. Glyph match-
ing is the process of matching which compares an input im-
age with glyph images. The input of our method is a raster
image. First, the input image is subdivided into grids which
are of the same size as the glyph images. In this paper, these
grids are called blocks. Second, we execute glyph matching
which calculates similarity measure or dissimilarly measure

between the input image and glyph images at each block. We
set the glyph which is considered the best glyph by matching
a block as one glyph of ASCII art string. We execute this
process for every block. We describe four methods which are
used in the matching process in the following sections.

4.1 Template Matching
We apply template matching to our method for calculating
dissimilarly measure between a block of an input image and
glyph images. This method considers pixel positions of im-
ages, while half-toning method considers the average value
of brightness per block. Therefore, template matching is con-
sidered as a method that can represent the line feature of in-
put image. We calculate dissimilarly measure by using Sum
of Absolute Difference (SAD). SAD between a block and a
glyph, fdiff is calculated using the following equation.

fdiff =
height∑

j

width∑
i

|I(i, j) − G(i, j)|, (1)

where I and G are the brightness values of a block of an
input image and a glyph image, i and j are the coordinates of
pixel position. height and width are the sizes of blocks. We
calculate fdiff using every glyph images at the block. The
glyph whose value of SAD is the lowest in glyph is set as a
glyph of ASCII art string.

4.2 NCC with Histogram of Image Grid
Template matching using SAD is influenced by the differ-
ence between an input image and glyph images in line width.
In this section, we introduce a method minimizing the in-
fluences of difference in line width. We also describe Nor-
malized Cross-Correlation (NCC) which calculates similarity
measure, while SAD represents dissimilarly measure.

To minimize the influence of the difference of the line
width, we make a histogram of an image block. This his-
togram represents the number of black pixels in a block. To
make a histogram of an image block, we divide the block us-
ing small grids (Figure 3). In each grid, we count the number
of black pixels, and set the number in the same grid of the
histogram.

Figure 3: Image block: Black grids are pixels, and red grids
are clusters of pixels for histogram counting.

NCC [4] is a method that calculates similarity measure.
NCC between a block and a glyph image, fsim is calculated
using the following equation.

fsim =

grids∑
i

Hblock(i)Hglyph(i)√√√√grids∑
i

Hblock(i)2 ×
grids∑

i

Hglyph(i)2

, (2)

where Hblock and Hglyph are the histograms of a block of an
input image and a glyph image. grids represent the set of
grids in a block. Calculating the NCC value of every glyph
image, the glyph whose fsim is the highest is regarded as the
best matching grid for the block. The closer fsim is to 1, the
more similar are the two histograms.

4.3 Histogram of Oriented Gradients
In this section, we introduce the computation of Histogram
of Oriented Gradients (HOG) [5] , and describe a matching
method using HOG. First, we calculate gradient magnitude,
m(i, j) and orientation, θ(i, j) at each pixel of images using
the following equations.

m(i, j) =
√

fx(i, j)2 + fy(i, j)2, (3)

θ(i, j) = tan−1

(
fy(i, j)
fx(i, j)

)
, (4)

where fx and fy are the first order derivatives of horizontal
and vertical directions. After calculation, we divide images
by 5x5 pixels grid called cell. We create an orientation his-
togram which consists of nine cells. We make an orientation
vector by using HOG blocks which consist of 3x3 cells (Fig-
ure 4), and we normalize the vector.

Figure 4: HOG block consists of 3x3 cells. For calculating
an orientation histogram at each HOG block, the center cell
of HOG block is moving to the next cell in the direction of the
arrows.

We make a feature vector from all HOG blocks. If there
is n HOG blocks in an image, the feature vector of HOG has
9n dimensions. The difference between HOGs , DHOG is
calculated using the following equation.

DHOG =
Dimension∑

i

(Hi − Hg)2, (5)

where Hi and Hg are HOGs of block of an input image and a
glyph image. We set the glyph which has the smallest mean
square error as a glyph of ASCII art.

4.4 Distance Transformation
In this section, we describe a matching method using dis-
tance transform. Distance transformation is a method which
creates the distance map from input images (Figure 5). The
pixel value in a distance map is defined as the distance be-
tween the pixel and the nearest pixel of 0 value in the input
image. We calculate the distance between a block of input
image and glyph images using distance transformation. We
calculate the distance between a block and glyph image, Dig

using the following equations.

Dig =
height∑

j

width∑
i

IDT (i, j)G(i, j), (6)

where IDT is the value of the distance map of the block, and
G is the brightness value of glyph image. We define the glyph
whose distance is the smallest in glyphs as the glyph of ASCII
art.

(a) Input image (b) Distance map

Figure 5: Examples of distance transformation.

5 Results

We show the results of our system. Our system is imple-
mented using the C language and using the OpenCV library
[6]. The experiments shown in this paper were conducted
using a PC with an Intel Core 2 Duo 2.0 GHz CPU with
2.0GB main memory, and an NVIDIA GeForce 9400M GPU.
We show the input images and the results using the matching
methods in Figures 6 to 10. The resolution of the Bear im-
age is 720x960 pixels. The resolution of the Shapes image is
512x528pixels. The sizes of the glyphs are 16x32pixel.

(a) Bear

(b) Shapes

Figure 6: Input images.

Figure 7: The results of template matching.

Figure 8: The results of NCC. Figure 9: The results of HOG.

Figure 10: The results of distance transformation.

Our method is faster compared to the method proposed by
Xu et al. [3] which takes about 10 minutes (Table 1). As the
result, our system allows users to interactively create ASCII
art images.

Table 1: Computational time using the four matching met-
rics.

Computational time (sec) Bear Shapes
Template matching 0.43 0.15
NCC 0.41 0.12
HOG 1.56 0.49
Distance Transformation 0.36 0.12

6 Conclusions and Future Work

In this paper, we have proposed an interactive system
which creates structure-based ASCII art in a few seconds
from images or illustrations which are drawn by users us-
ing image gradient and distance transformation. In our sys-
tem, users can see the results immediately. Our system allows
users to also edit the glyphs of the results by choosing from
displayed candidates.

Based on experimental results, we found that the suitable
matching metrics to produce visually pleasant ASCII art im-
ages depend on the type of the input images. Therefore, we
need to have objective evaluations by user test. We will have
users choose the best results for input images. We would like
to create ASCII art which consists of proportional font. The
glyphs of proportional font are of different width size. ASCII
art of proportional font are often used in Japanese bulletin
board system, such as 2channel.

References
[1] Jan Hubicka. AA-lib.

http://aa-project.sourceforge.net/aalib/.

[2] Paul D. O’Grady and Scott T. Rickard. Automatic ascii
art conversion of binary images using non-negative con-
straints. In Proceedings of the Irish Signal and Systems
Conference, pages 186–191, 2008.

[3] Xuemiao Xu, Linling Zhang, and Tien-Tsin Wong.
Structure-based ascii art. ACM Transactions on Graphics
(SIGGRAPH 2010 issue), 29(4):52:1–52:9, July 2010.

[4] Kai Briechle and Uwe D. Hanebeck. Template matching
using fast normalized cross correlation. In Proceedings
of SPIE, volume 4387, page 95, 2001.

[5] Navneet Dalal and Bill Triggs. Histograms of oriented
gradients for human detection. In IEEE Conference Com-
puter Vision and Pattern Recognition, pages 886 – 893,
2005.

[6] Intel Corporation and Willow Garage. OpenCV.
http://opencv.willowgarage.com/.

