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Figure 1: (a) An input image for texturing with our proposed system. (b) Result of texturing (a) with textures in (c,d). (c) An irregular texture.
(d) A regular texture. (e) User specification for the texturing process of the cloak in (a).

Abstract

In this paper, we propose an interactive system for texturing ob-
jects in images without reconstructing the full 3D models. To make
the texturing process easy for users, we emphasize on intuitiveness,
and our system lets users perform texturing via a sketching inter-
face. In addition, our system provides simple tools for specifying
occlusion and perspective of the texturing objects. To texture with
our system, first, with the sketching interface, users design the nor-
mal vector fields of objects in images that they wish to paste tex-
tures on. Next, to depict the shapes of the objects, the textures are
deformed according to the normal vector fields, and pasted in the
images over the objects. Once the textures are pasted on the images,
users can manipulate (move, scale and rotate) the textures, and see
the textures deformed interactively as if the textures were pasted on
3D models. The proposed system is tested with various kinds of
objects in images, and we show that our system supports texturing
with textures of regular, near-regular and irregular types.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture

Keywords: image manipulation, 2D texture mapping, sketch-
based user interface

1 Introduction

Because of the fact that textures can make a huge difference for
both drawings or photographs, changing textures in photographs or
adding textures in drawings are important image editing techniques.
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The problem of texturing on objects in images is to paste textures
on objects in images, which contain only 2D information, and the
results give the impression that the textures are pasted on 3D objects
as shown in Figure 1.

Several works such as [Liu et al. 2004; Fang and Hart 2004; Win-
nem̈oller et al. 2009] have been proposed for manipulation of tex-
tures in images, but they are either not interactive or require a lot of
interaction from users. In addition, although textures can be clas-
sified into types according to the repetition pattern of the texels;
regular, near-regular and irregular, several of the previous work are
designed only for texturing with regular and near-regular textures.
Moreover the previous work does not have a systematic algorithm
for handling occlusion as shown in Figure 2(a), and perspective of
objects as shown in Figures 2(c,d). Thus, texturing objects with
these effects using a single texture requires both a lot of and effort
from users.

Because images are the results of projecting 3D objects onto image
planes, the objects in images contain only 2D information which is
the positions on image planes in form ofxy coordinates. Thus, the
information in the third dimension of the objects, such as distances
from the image planes and normal vector fields on the surfaces,
are unknown. However, the information is required to depict the
shapes of the objects during texturing. With only information of the
positions on image planes, the results of texturing will always look
like the textures are pasted on planes parallel to the image planes.

There are two alternative approaches to add the third dimensional
information to the images. The first approach is using algorithms
such as shape-from-shading algorithms [Frankot and Chellappa
1988; Kovesi 2005; Prados and Faugeras 2005] to automatically
recover normal vector fields from the shading of the objects. How-
ever, shape-from-shading problem is well-known to be an ill-posed
problem, and the algorithms used to solve the problem are con-
strained by many factors. Moreover, this approach requires the
shading information of the objects which is usually not available
in case of input images such as drawings as shown in Figure 1(a).
Another approach is adopting a user interface. Since human is ca-
pable of perceiving the 3D information of the objects from a single
image, many works [Wu et al. 2007; Zhang et al. 2001; Okabe et al.
2006; Kang 1998] have been proposed for adding depths and nor-
mal vector fields to the images via user interfaces.

Our purpose is to provide users an interactive system that supports
texturing with images either drawings or photographs, and the types
of the textures are not limited. Moreover, we want the system to be



intuitive and requires minimum user interactions. Thus, we choose
to approach the problem of obtaining the 3D information of the ob-
jects by letting users specify the normal vectors at some parts of the
objects in images with a simple sketching interface. Then, we per-
form an optimization of an energy function to obtain normal vector
fields of the objects. Finally, depth values and textureuv coordi-
nates (see Figure 10(c)) are computed based on the normal vector
field to deform and paste the textures over the images. We show
that theuv coordinate calculation of our system let the system sup-
ports texturing without restriction on the types of textures, and our
sketching interface is both intuitive and requires only small num-
bers of user interactions. In addition, our system provides simple
tools to reduce users’ burden in handling occlusion and perspective
of the objects. An example result of our proposed system is shown
in Figure 1. Figure 1(a) is the input of our system, the cloak and the
two balls on the bench are textured with our proposed system, and
the result is shown in Figure 1(b).

In this paper, we explain the related work in Section 2 and describe
our proposed user interface in Section 3. The underlying algorithms
are explained in Section 4. We show results of texturing using the
proposed system and discuss its limitations in Section 5. Finally,
we conclude this paper in Section 6.

Figure 2: (a) Object with occlusion, in this example, curtains. (b)
Object with a sharp edge. (c) Texture pasted taking perspective
into account (with relative depth specification). (d) Texture pasted
without considering perspective.

2 Previous Work

We review the previous work related to two problems; texturing in
images and normal construction with user interface.

2.1 Texturing in Images

Many texture synthesis papers proposed methods to paste textures
in specified regions in 2D images such as [Liang et al. 2001; Efros
and Freeman 2001]. However, these proposed methods paste the
results on a plane parallel to the image plane only. The shapes of
the objects under the textures are not considered in these works.

[Liu et al. 2004] presented a system for replacing textures in 2D im-
ages that uses 3D meshes to create 3D effects. Initially, the vertices
of the meshes are spread uniformly in a grid form, then the system
lets users manually arrange the positions of each vertex over each
texel of the replaced textures in the images. Next, the deformed
meshes are used for calculating texture coordinates and shadings
for new textures. Thus, the system not only does not support irreg-
ular texture but also requires a lot of effort from users.

[Fang and Hart 2004] proposed a system that attempts to reduce
user interactions by letting users specify the regions for replacing
textures, next a shape-from-shading computation is performed to
recover the normal vector fields of the regions. The textures are
then deformed according to the recovered normal vector field in
order to depict the shapes of the underlying objects. The texture
parameterization proposed in this system requires splitting of the
recovered normal vector field into patches, then handles the discon-
tinuities on the edges of each patch by a blending algorithm. Due
to the blending algorithm, this system only supports regular and
near-regular textures, and the texturing is not interactive.

The system proposed by [Winnemöller et al. 2009] lets users design
the normal vector fields and theuv coordinate maps of texturing
regions in images with diffusion curve (DC) [Orzan et al. 2008].
Using this method, the system can handle texturing on the speci-
fied objects in images including objects with occlusion. However,
since several designs with DC must be provided by users, a com-
plete texturing proposed in this paper requires many interactions
from users. Moreover, this system does not consider depth, thus
users must carefully and manually design theuv coordinate map in
order to perform texturing on an object such as the one shown in
Figures 2(c,d).

[Mihalik andĎurikovič 2010] proposed a system to transfer mate-
rial appearance between two objects in images based on the normal
vector fields from a shade-from-shading algorithm. Although the
purpose and approaches of their proposed system is different from
ours, the idea of the problem is rather similar.

2.2 Normal Vector Construction with User Interface

Since we choose to construct the normal vector field of the objects
using user interface, we also review some recent techniques.

The normal reconstruction via user interfaces were proposed
by [Zhang et al. 2001; Okabe et al. 2006; Wu et al. 2007]. [Ok-
abe et al. 2006] proposed a system that lets users specify normal
vector at parts of the images through pen tablets whose measure-
ment of angle between the pen and the pad is provided. The an-
gles measured by the device is interpreted as normal vector of the
parts of the objects, and by changing the angles, users can specify
the normal vectors. However, controlling the device requires skills,
and specifying normal vectors lying parallel to the image plane is
difficult with this device.

In [Wu et al. 2007], users interact with the system via a simple
sketching interface. Sparse normal vector field is constructed by
copying normal vectors along the strokes drawn on an interface
called shape palette to their corresponding strokes drawn on an
identified region in an image. Then its dense normal vector field
is obtained by optimizing an energy function. Copying normal vec-
tors helps users who are not very skilled in controlling pen tablet
and ease the difficulty of specifying normal vectors that lie parallel
to the image plane.

3 Proposed User Interface for Texturing

Using our interface, to paste textures on the objects in images, users
design and construct normal vector field of the texturing region first,
then users can interactively adjust the textures over the region as if
it were pasted on a 3D object. We provide users the following func-
tions to adjust the textures; pinpoint specification, texture transla-
tion, texture rotation, texture scaling and relative depth specifica-
tion. Thus, the proposed interface is divided into two parts which



are interface for texturing region design and interface for texturing
control.

3.1 User Interface for Texturing Region Design

Due to the intuitiveness, we choose to employ a sketching interface
similar to shape palettes [Wu et al. 2007] for normal vector design.
The user interface is shown in Figure 3. On the left side with an
image of a woman in white dress is thecanvaswhere input image
is shown and users draw stroke upon. The two spheres in Figure 3
are shape palettes. For ease of specification, the upper is a convex
shape palette or the outer surface of a hemisphere, and the lower is
a concave shape palette or the inner surface of a hemisphere. The
meaning of shape palettes are shown in Figure 4. Drawn strokes
on the shape palette in Figure 4(a) hold meaning in 3D as shown
in Figure 4(b). Specified normal vectors from drawing the blue
stroke in Figure 4(a) are shown as normal vectors (orange arrows)
in Figure 4(b).

Figure 3: Specification of texturing region and its normal vector
field. The red”2” loop on the canvas is the silhouette of the tex-
turing region. Two spheres on the right side are shape palettes. The
”1” line is a splitting stroke that splits the specified region into two
subregions, and the initial normal vector field of each subregion
is specified separately as shown on the upper shape palette (”2”
loops). Other strokes are drawn to specify normal vectors. The
same color strokes represent the matching strokes for normal trans-
fer.

First, users draw the object silhouette on the canvas to identify the
texturing region, then users can place, scale and rotate the silhouette
strokes on a palette to specify the initial guess of the normal vector
field of the region as shown in Figure 3 by the”2” stroke. This ini-
tial normal vector fields provide users with the rough pictures of the
shapes being drawn. Second, users refine the normal vector field by
drawing strokes on the canvas within the silhouette and their corre-
sponding strokes on the palettes. The normal vector on the region
along the strokes are modified to the normal vectors from their cor-
responding strokes on the palettes. The length of the strokes on the
canvas and their corresponding strokes on the palettes are normal-
ized, then normal vectors on the strokes on the palettes are directly
mapped to the strokes on the canvas, which give a sparsely specified
normal vector field. The final normal vector field is then obtained
by optimizing an energy function [Wu et al. 2007] associated with
the specified normal vector field.

The normal vector field produced by the interface proposed in [Wu
et al. 2007] is assumed to be a normal vector field of a surface that
contains no discontinuity. Thus, construction of objects with oc-
clusion (Figure 2(a)) is not possible, and to specify sharp edges

Figure 4: Normal vectors specification with shape palettes. (a) Con-
vex shape palette in our user interface. (b) Imaginary 3D model of
the convex shape palette.

Figure 5: Splitting a region into two subregions with a splitting
stroke (”1” ). (a) Specification of one region. (b,c) Splitting the
region in (a) into two subregions with a splitting stroke. Then, the
initial normal vector field of each subregion is specified separately.

(Figure 2(b)) more than one strokes are necessary per one sharp
edge as shown in Figure 14. To handle occlusion and reduce user
interactions in sharp edge specification, we let users drawsplitting
strokesacross the specified region as shown in Figure 5. The split-
ting strokes let users specified the position of discontinuity on the
surface, thus the construction of normal vector field with our inter-
face is now not limited to the assumption of surface with no discon-
tinuity. Due to the produced discontinuity, we called the areas in
the specified region that contain no discontinuity in them assubre-
gions. So we can see that a splitting stroke splits the region it was
drawn on into two subregions as shown in Figure 5. Note that the
subregions are textured together at the same time as one object.

Specifying discontinuity is enough to reduce the number of strokes
required for producing sharp edges as shown in Figure 14, however
to texture object with occlusion using a single texture, only discon-
tinuity is not enough to identify the occluded area on the texture.
Thus, we let users to specify the distance into the screen between
subregions after drawing a splitting stroke with an user interface as
shown in Figure 6. This distance is used in texture coordinate cal-
culation to approximate the portion of the texture that is occluded.
Notice that when the distance is zero the texture on the two subre-
gions will be continuous without any occluded part. However when
the specified distance between the two subregions is not zero some
parts of the texture is occluded (Figure 6(c)). Our system does not
aim to accurately calculate the occlusion, but its goal is to provide
users a tool that help them create the occlusion effect.

3.2 User Interface for Texturing Control

Besides constructing the normal vector field, users can also manip-
ulate the textures on the texturing regions.

3.2.1 Pinpoint Specification

During texturing, users might want to specify a point of the texture
to appear on a particular point of the specified region. Thus, our



Figure 6: The effect of occlusion as the distance between the subre-
gions is specified. (a) Specify two subregions by a splitting stroke.
(b) Result of texturing when the distance between the subregions is
zero. (c) Result of texturing when the distance between the subre-
gions is greater than zero. (d) Black strip shows the occluded part
on the original texture. (e) User interface for specifying the distance
between the subregions.

user interface provides tool for specifying a matching point on the
texture and the region calledpinpoint. Specification of a pinpoint is
done by clicking a point on the texture, and then another point on
the region. After the texture is pasted on the object, the specified
pinpoint serves as the center for moving, scaling and rotating the
texture.

3.2.2 Relative Depth Specification

Figure 7 shows that only normal vectors are not sufficient for the
calculation of the geodesic distance between points of the objects
which is important for identifying texture scale as shown in Fig-
ure 2(d). Since the texture scale is nearly uniform on every point,
the image does not give the impression that the texture is pasted on
the road. To give the impression that the texture is pasted on the
road, which is gradually further from the viewer, the texture scale
must be gradually decreased.

Figure 7: Perspective projection. Distance between the viewpoint
and image plane, also the distance between the object and the image
plane in (a) is smaller comparing those in (b). Normal vectors of
the two points on the image planes are identical, but the distances
between the points on the 3D objects are not the same.

The system proposed by [Horry et al. 1997] uses a spidery mesh
interface to obtain other parameters concerning perspective projec-
tion in order to construct the 3D model of the scene from a single
image. However, in our system the 3D model of the whole scene
is not necessary since we want to modify only some parts of the
images. We let users specify the relative depth to the image plane
of two points on the objects. The first point is the furthest point
on the object to the image plane, and another point is the nearest
point on the object to the image plane as shown in Figure 8(a) with
pink points. The user interface for specifying the relative depths are
shown in Figure 8(b), and the effect of the specifications is shown
in Figures 8(c,d).

Figure 8: Specification of the relative depth. (a) The pink points es-
timated by the system show the furthest point and the nearest point
to the image plane on the object. (b) Interface for specifying the
depths. (c) The relative depths of the two points are very close
to each other. (d) The difference of the relative depths of the two
points are increased.

4 Algorithms

In this section, we describe the underlying algorithms of the pro-
posed system. To create 3D effects to the texture, first we construct
the normal vector fields of the objects from the users’ specifica-
tions via the sketching interface (Section 4.1). Then, the furthest
and nearest points on object are estimated, to let users specify the
relative depth (Section 4.2). Finally, the texture coordinates are
calculated according to the results of Section 4.1 and Section 4.2
(Section 4.3).

4.1 Normal Vector Field Construction

We first explain the idea of constructing the normal vector field
by energy optimization as proposed in [Wu et al. 2007], then we
propose a method to modify the optimization, so that it serves our
system’s goal better.

Normal vector at pixeli are represented as a vector(xi ,yi ,zi), then
it can be rewritten as 1√

p2
i +q2

i +1
(pi ,qi ,1) wherepi =

xi
zi

andqi =
yi
zi

.

To construct a normal vector field, an energy function for estimating
pi andqi of every pixels is shown as Equation 1. The goal of op-
timizing energy function (Equation 1) is to obtain a normal vector
field that is closest to the sparsely specified normal vectors (the first
part of Equation 1) while enforcing smoothness on the changing in
orientation of the normal vectors (the second part of Equation 1),
and keeping the curvature of the surface, which its normal vector
field is the result of this optimization, minimal (the third part of
Equation 1).

E(G) = ∑
k∈S

(pk− p̄k)
2

constant1
)+ ∑

i∈G
∑
j∈Ni

(pi − p j )
2

constant2

+ ∑
i∈G

( ∑
j∈Ni

pi −||Ni ||p j )
2

constant3
.

(1)

In Equation 1,G = (pi |i ∈ 1, ...,M), G is a set ofp of every pixel
in the specified region, andM is the total number of pixels in the
region. Ni is a set of first order neighbours of pixeli. S is a set
of pixels whose normal vectors are specified, and ¯pk are from the
specification on shape palette. Equation 1 only shows the estima-
tion of p of every pixel,q of every pixel is estimated in the same
way by replacingp in the equation withq.

We can see that the optimization of Equation 1 gives a smooth
normal vector field. However, sharp edges and occlusions on sur-
faces produces discontinuity, thus in order to create sharp edges
and occlusions, we modify the optimization process such that the
optimization results contain discontinuities based on the splitting



strokes specified by users as in Equation 2.

E(G) = ∑
k∈S

(pk− p̄k)
2

constant1
+ ∑

i∈G
∑

j∈Ni∧ j∈Ri

(pi − p j )
2

constant2

+ ∑
i∈G

( ∑
j∈Ni∧ j∈Ri

pi −||Ni ||p j )
2

constant3
.

(2)

When users specified splitting strokes, the regionG, which is ini-
tially one region, are divided into several subregions represented
with R. Ri is a subregion that pixeli belongs to, where

∪
i∈G

Ri = G,

Ri ̸= /0 and any two subregions are mutually exclusive. This means
that the smoothness and curvature minimization are enforced on
each subregion separately, thus discontinuities are allowed along
the borderlines between subregions, which are splitting strokes that
users specified (Figure 5).

In our implementation, we solve the optimization problem with
Gauss-Seidel solver on each subregion separately. This allow the
optimization to converge faster, and increase parallelism of the pro-
gram. The initial normal vector fields (Figure 3), which are spec-
ified by place, scale and rotate the silhouette stroke on the shape
palettes, not only give users the general pictures of the shapes they
are creating, but also serve as the initial guess of the optimization
solution.

4.2 Estimation of Nearest and Furthest Points

Since the position on the image plane of the projected point on
3D object depends onDview,ob ject

Dview,plane
as shown in Equation 3, where

Dview,ob ject is the distance between the view point of the perspec-
tive projection (we assume that the view point is at some distance
from the center of the image plane in +z direction) and the projected
point, andDview,plane is the distance between the view point and the
image plane, to control the texture scale, users have to only specify
the relative depth of the furthest point and the nearest point from
image plane on the object. Then, the ratioDview,ob ject

Dview,plane
is automatically

calculated, and the ratio is used in texture coordinate calculation to
give the right texture scale.

x−coordinateob ject = x−coordinateplane×
Dview,ob ject

Dview,plane
,

y−coordinateob ject = y−coordinateplane×
Dview,ob ject

Dview,plane
,

(3)

where x-coordinateob ject and y-coordinateob ject are thex and y
components of the point on the object before the projection, and
x-coordinateplane andy-coordinateplane are thex andy component
of the projected result on the image plane.

The points on the object that are furthest and nearest to the image
plane can be estimated from the specified normal vector field, thus
to save users from the complication of specifying the points, our
system estimates these two points on the objects for users automat-
ically. Next, we describe how to estimate the pixels which are the
results of projecting the nearest point and the furthest point from
the image plane on the object.

Estimation of the relative depth between two adjacent pixels are
shown in Figure 9(a). At first we do not know how much one pixel
distance is before the projection, which is distances in Figure 9(a),
thus we assumes to be a constant value calledKde f ault which means

the ratio of Dview,ob ject

Dview,plane
is assumed to beKde f ault. Since we know

the normal vectors of each pixel, we can fit in a curve, whose nor-
mal vectors at the two points are the known pixel’s normal vectors.

Thus, the relative depthd can be calculated. Assume, the depth
from the image plane at the left (purple) point is known, then we
add the relative depthd (Figure 9(a)) to it to obtain the depth from
the image plane at the right (orange) point.

We estimate the depth of every pixel in the region to obtain the
pixels which represent the nearest point and the furthest point from
the image plane on the object. The estimation is done subregion
by subregion first, and finally the users’ specified distance between
subregions (Figure 6) are added to each pixel in the subregions to
obtain the complete estimation.

The estimation in each subregion is done as following. First, the
depth of the pixel in the middle of the subregion is set to zero.
Then, from the middle pixel, the depth of the adjacent pixels are
estimated with the above-mentioned method. The estimation is per-
formed repeatedly from the pixels whose depths from image plane
are already estimated to their adjacent pixels whose depths from the
image plane are still unknown. The estimation stops when depth of
every pixel in the subregion is estimated.

Figure 9: (a) Estimation of the relative depth between two pixels.
(b,c) Difference in geodesic length. (b) The object is not a plane.
(c) The object is a plane. After projection the left points (purple)
and the right points (orange) in both (b) and (c) are separated by
one pixel distance, however the geodesic distance between the left
point and the right point in (b) is greater than in (c).

Once the pixels that represent the nearest point and the furthest
point on the object are identified, users can specify depth from the
image plane of the two points as stated in Section 3.2.2. The users’
specified depths are then, used to correct the ratioDview,ob ject

Dview,plane
which

we assumed to beKde f ault at first. The correction of the ration is
done as in Equation 4.

Dview,ob ject

Dview,plane
= Kde f ault

D̄ f urthest− D̄nearest

D f urthest−Dnearest
, (4)

whereD̄ f urthest andD̄nearestare the depths of the furthest and near-
est points specified by users with the interface in Figure 8, and
D f urthest andDnearest are the estimated depths of the furthest and
nearest points by our method.

4.3 Texture Mapping with Designed Normal

As shown in Figures 9(b,c), although the distance between the pur-
ple points and the orange points in both Figure 9(b) and Figure 9(c)
are the same, the geodesic length between the two points (purple
and orange) on the surfaces are not the same, thus to paste the tex-
ture over the specified region such that the result gives the correct
shape of the object, texture coordinates, oruv coordinates, must be
calculated for texture mapping based on the obtained 3D informa-
tion of the objects. In this section, we show how to calculate texture
coordinates with the normal vector field and the ratioDview,ob ject

Dview,plane
ob-

tained from the algorithms in the previous sections.



We can see that in order to depict the shape of the object, the cor-
rect distance on the texture between the pixels on the image is equal
to the geodesic distance on the object. We calculate the geodesic
distance on the object between two pixels as shown in Figure 10.
Let the uv coordinate ofp is known, and theuv coordinate ofr
is unknown. The positions on the 3D object (p′ and r ′) of the
two points (p andr) on the image plane are calculated by inverse
perspective projection with ratioDview,ob ject

Dview,plane
as in Equation 3 (find-

ing x-coordinateob ject andy-coordinateob ject). We assume that the
geodesic curve between thep′ and r ′ is closed to a straight line.
Since theuv coordinate of pixelp is known, if we know the rela-
tionship between the position ofp′ and r ′, then theuv coordinate
of pixel r can be calculated by adding a vector that represent the
relationship between the position ofp′ andr ′ (black dash vector in
Figure 10(c)) to theuv coordinate atp as shown in Figure 10(c).
Thus, we aim to find such vector.

As the geodesic curve between pointp′ and r ′ is assumed to be
closed to a straight line, we calculate a vector fromp′ to r ′ to rep-
resent both the direction and the distance ofr ′ relative top′ (yellow
solid vector in Figures 10(a,b)). The obtain vector although repre-
sents the relationship between the position ofp′ andr ′ as we want,
it cannot be added to theuv coordinate of pixelp directly since the
vector is in 3D coordinate system. We have to transform the vector
to a 2D coordinate system first, while the distance and the direction
in 2D of r ′ relative top′ have to be preserved. We construct a 2D
coordinate system aroundp′ as a tangent plane atp′. The tangent
plane is constructed with the normal vector of pixelp as the result
of energy optimization in Section 4.1. If we projected the pointr ′

to the tangent plane atp′, we can see that the direction in 2D ofr ′

relative top′ is preserved however the distance betweenp′ andr ′

is not preserved. Instead of projection, we rotate the yellow vector
to the tangent plane as shown in Figure 10 to preserve both the dis-
tance and the direction in 2D ofr ′ relative top′. By the rotation of
the vector, the black dashed vector in Figures 10(a,b) is obtained.
Finally, the black dashed vector, which is a 2D vector, is added to
pixel p’s uvcoordinate on the texture to obtain theuvcoordinate of
r (left red point in Figure 10(c)).

The calculation of theuv coordinate of every pixel in the specified
region is the extension of the above-mentioned method. First, since
users specify a pinpoint to control the position in the specified re-
gion, we set theuvcoordinate of the pinpoint to be the coordinate on
the texture as specified. Then, theuv coordinates of the pinpoint’s
adjacent pixels are calculated with the above-mentioned method.
Theuvcoordinate calculation is repeatedly performed from the cal-
culated pixels to their adjacent pixels untiluv coordinate of every
pixel in the region is known. During the calculation, for a pixel
whose uv coordinate is unknown, it is possible that more than one
of its adjacent pixels are already calculated for theiruvcoordinates.
In this case, we calculate theuv coordinate for the new pixel from
each of these adjacent pixels separately, and then, the finaluv co-
ordinate is the weighted arithmetic mean of the coordinates. Since
error piles up little by little as the calculation moves away from the
pinpoint, we propose to use 1

|p j−ppinpoint| as the weight applied to the

coordinate calculated from the adjacent pixelj. p j is the position
of pixel j and ppinpoint is the position of the pinpoint pixel in the
specified region.

To handle occlusion, users specify splitting strokes and the dis-
tances between subregions. Thus, we need to consider the
user-specified distance between subregions when we compute the
geodesic distance between any two pixels across the splitting
strokes where the distance between the subregions are not zero.
Along a splitting stroke, we first find two pixels from each sub-
region whose difference of the relative depth (to the image plane)
of their inverse projected points is the smallest. We call these two

pixels bridge pixels of the subregions as shown in Figure 11, and
call the difference of their relative depths∆dsmallest. We limit the
above-mentioneduv calculation within the same subregion when
the distance between the subregions are greater than zero. To con-
tinue the calculation from one subregion to the another, we, first,
calculate the black dash vector from the bridge pixel of the former
subregion to the bridge pixel of the later subregion, then set the
vector’s magnitude to∆dsmallestbefore adding the vector to theuv
coordinate of the bridge pixel of the former subregion. Then, the
above-mentioneduvcoordinate calculation is continued.

Figure 10: Calculation of theuv coordinate from one pixel on the
image plane to another pixel. (a) Pixelp and pixelr on the im-
age plane are inverse projected to find their positions on the object
which is p′ andr ′. (b) Shows how to rotate the vector fromp′ to r ′

to the tangent plane atp′ which is constructed with the normal vec-
tor at pixelp (result of optimization in Section 4.1). (c) the result of
rotating the vector to the image plane is the dash vector. Since the
uv coordinate of pixelp is known, we calculate theuv coordinate
for pixel r by vector addition.

Figure 11: Bridge pixels along the splitting stroke. (a) Top view
of the subregions. (b) Side view of the subregions. The upper sub-
region is the subregion in which theuv coordinate calculation is
performed first, and the lower subregion is the next subregion in
which theuvcoordinate calculation will continue on.

5 Results

Using our proposed system, users can perform texturing interac-
tively, and in this section we show the results of texturing various
kind of objects in images. A result of pasting textures over a plain
mask with our proposed system is shown in Figure 12. We demon-
strate that texturing with our proposed system supports any types
of textures as the texture in Figure 12(c) is an irregular texture, and
the texture in Figure 12(f) is a regular texture.

Occlusion handling is demonstrated with an irregular texture as
shown in Figure 13. In Figure 13(b) the texturing region is not
split. However, in Figure 13(c) the texturing region is split by a
splitting stroke into two subregions, and the distance between the
two subregions are specified to be a value greater than zero. Thus,
we can see that some portion of the texture are occluded and the re-
sult of texturing in Figure 13(c) is not continuous. The specification
of strokes used to produce this result is shown in Figure 3.



Figure 12: Results of texturing a plain mask with our proposed
system. (a) Input image. (b) Calculated normal vector field from
user specifications. (c) An irregular texture. (d) Texturing result
with the texture in (c). (e) Texturing result with the texture in (f).
(f) A regular texture.

Figure 13: The effect of occlusion. (a) The input image. The results
of texturing the skirt in the rectangle is shown in (b) and (c). (b) The
texture is not occluded. (c) The texture is occluded. (d) The texture
used for texturing of (b) and (c). The black strip shows the occluded
part.

A result of pasting texture on an object with a sharp edge is shown
in Figure 14. In Figures 14(e,f) we also show the comparison of
specifying the normal vector to create the sharp edge with and with-
out our splitting stroke. As we can see without the splitting stroke,
users must specify two close strokes on both sides of the sharp edge,
so that the result of the optimization contain sudden changes in the
orientation of the normal vector. However, specification of the two
strokes are not easy since the stroke must be as closed to each other
as possible yet it must not cross each other. With a splitting stroke,
users just draw the stroke across the region which take much less
time and effort.

In Figure 1, the user textured three objects in the image; the cloak
and the two balls on the bench. Two textures are used in this re-
sult, one is a regular texture (chessboard pattern) and another one
is an irregular texture (blue spiral pattern). The two balls on each
side of the bench is textured with one region, no splitting stroke
is specified. Notice that the balls initially are smooth and round,
however for artistic purpose the user carved ridges on them. The
cloak is textured as one object with three subregions, two splitting
strokes are specified as shown in Figure 1(e). Only the initial nor-
mal vector field of the uppermost subregion is specified, for the
other two subregions, the normal vector field is specified purely
with normal strokes. This shows that the optimization works cor-
rectly even without the prior knowledge of the shape of the object.
However, the optimization converges faster with the specification of
the initial normal vector field and rough picture of the shape helps
users draw strokes easier. Notice that the texture scale at the lower
part of the cloak is larger comparing to the texture scale around the
shoulders. This is due to the relative depth specification to produce
a result that is consistent to the perspective of the scene.

Figure 14: An example of texturing an object with a sharp edge. (a)
Input image with a sharp edge. (b) Constructed normal vector field.
(c) Results of texturing. (d) Specification of the normal vector field
in (b) without a splitting stroke. (e) Specification with a splitting
stroke. (f) Show the matching strokes on the shape palette.

We compare the texturing using our proposed system to the results
produced by [Winnem̈oller et al. 2009]’s system (Figure 15) since
their purpose is the most similar to ours. Although the system pro-
posed by [Winnem̈oller et al. 2009] also includes the design of the
texture, we compare only the texturing time of the two systems
without taking their texture design time into account. Texturing
time of Figures 15(b,c) with our system is 16 minutes per image
while texturing of Figure 15(a) takes 30 minutes, and our textur-
ing time of Figures 15(d,e) is 30 minutes while texturing time of
Figure 15(c) is an hour in [Winnem̈oller et al. 2009]’s system, ac-
cording to the paper. The time used to perform texturing for each
result in this paper is shown in Table 1.

Table 1: Texturing time.

Figure 16: Limitations of the proposed system. (a) The texture are
distorted at parts that are far away from the pinpoint (red point on
the mask). (b) Image with complex occlusion.

Our proposed system has some limitations. The texture coordinate
calculation described in Section 4.3 produces distortion at parts of
the regions that are far from the pinpoint (Figure 16(a)). This is
due to the error from the estimation of the black dash vector in Fig-
ure 10. As the calculation continues to propagate, the error from the
calculation piles up little by little, and could be seen more clearly
at parts that are far away from the pinpoint. In addition, our sys-
tem has a limitation in terms of handling complex occlusion. For
example, objects in Figure 16(b) which have many occlusions and
some parts of the texture are highly occluded. To texture such ob-
jects, many splitting strokes must be drawn and distances between



Figure 15: Comparison to texturing results in [Winnemöller et al. 2009]. (a,d) Result images from the paper; Fashion (a) and Sari (d). (b,c)
Our results of texturing (a). (e) Our Result of texturing (d). On the top left corner of (b,c,e) are the textures used in the results.

subregions must be specified several time, or the texturing must be
performed on several separate regions per one object.

6 Conclusions and Future Work

We have proposed an interactive system for pasting textures on ob-
jects in images. A sketching interface with normal specifying tool is
employed to design normal vector fields. Then, texture mapping is
performed based on the obtained normal vector field and the texture
scale value are controlled according to the relative depth specifica-
tion. Our system provides a tool for specifying pinpoints, which
allows users to control the texture position on the object. Since
our texture mapping can be performed in real-time, users can adjust
(move, scale and rotate) the textures after they were pasted on the
objects interactively. Our proposed system does not only provides a
systematic relative depth control, but also provides users with an in-
tuitive way to handle occlusion of objects in images. By specifying
splitting strokes and distance between the regions, users can create
an effect of occlusion easily. Moreover, with splitting strokes, users
can specify sharp edges with less effort and less user interactions.

For future work we would like to develop a user interface that can
texture an object with complex occlusion as shown in Figure 16(b)
more systematically. We also intend to conduct a user study on hu-
man perception to determine the fitness of our proposed interface.
Moreover, we would like to develop a texture calculation technique
that does not cause distortion at parts of the regions that are far from
the pinpoint.
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