
DEVELOPMENT FOR WEB-BASED CG SYSTEM AND ITS

APPLICATION TO MODELING AND ANIMATION SYSTEMS

Yoshinori MOCHIZUKI and Tomoyuki NISHITA

The University of Tokyo

Tokyo, JAPAN

ABSTRACT

Network infrastructure has become an important topic

in recent years, and there are now many di�erent ser-

vices using the World Wide Web. Accesses to Web

contents from mobile terminals such as notebook PC's,

cellular phones (i-mode, i�ppli (NTT DoCoMo, 2002))

have increased. This paper proposes a Web-based CG

system. Users specify parameters for the Web client

using HTML FORM or Java Applets. The Web server

receives these parameters, and executes a rendering pro-

cess, which requires a high computational cost. We also

apply this system to modeling and animation systems.

keywords: computer graphics, Java Applets, World

Wide Web

1 INTRODUCTION

Internet-related services, especially the World Wide

Web, have become widely used in recent years. The

services have a broad range of applications, which in-

clude business, various types of entertainment, distance

learning, and so on. These services are supported by

several di�erent representations and Web technologies

such as HTML, Java Applet, DHTML, VRML, XML,

and many types of dynamic contents have been used.

Computer graphics have become extensively used as a

representation technique for Web contents, so the role

of computer graphics has become very important.

Meanwhile, the client machines from which users access

Web contents have become diversi�ed. Mobile terminals

such as notebook computers, cellular phones (i-mode,

i�ppli) have also proliferated in recent years, but the

computational power of these mobile terminals is gener-

ally low, so it is very diÆcult to execute CG applications,

which require high computational power.

We propose a new CG system in which the procedure

for creating images is shared between the client machine

and the Web server. This system creates images and an-

imations using the following steps: Step 1) Users input

the necessary information to create the image using Java

Applets and HTML FORMs from the Web browser on

the client machine. That information is sent to the Web

server using CGI (Common Gateway Interface). Step

2) The Web server, which is made up of the information

analysis parser and the rendering application, receives

that information from the client machine via the infor-

mation analysis parser. Step 3) The information anal-

ysis parser converts the information into data that the

rendering application can use, and saves that data in the

parameter �le. Step 4) The rendering application loads

the parameter �le which is generated by the informa-

tion analysis parser, and executes the rendering. Step

5) The rendering results are saved as output �les, such

as JPEG and MPEG �les. An HTML �le that includes

the rendering results is generated, is sent back to the

client machine, and displayed by the Web browser.

There are several advantages to this system: (1) Users

can get high-quality rendering results even though the

client does not have extensive computer power, for in-

stance, a notebook computer. (2) Users only need the

Web browser on the client machine, so it is not necessary

to install a special application, and this system is there-

fore platform-independent. (3) Because this system uses

the Web, users can utilize this system wherever there is

an internet-capable environment.

2 SYSTEM OUTLINE

2.1 System Constitution

The constituents of this system are shown in Figure 1.

The information needed for rendering is generated from

HTML FORM and Java Applets on the Web client, and

it is noti�ed to the Web server through the CGI. The in-

formation analysis parser and rendering applications are

in the Web server, and the information analysis parser



receives the information from the Web client. The anal-

ysis parser processes the information so that the ren-

dering application can use it. The rendering application

generates an image based on these parameters. The gen-

erated image is returned to the Web client through the

CGI from the Web server.

Information for
rendering

Results
（Image, MPEG）

Information
analysis parser

Rendering
application

Parameters

Java Applet, HTML FORM

Web client

Web server

Result
window

Figure 1: System Constitution

2.2 Processing on the Web Client

First, the information needed for generating the images

is speci�ed by HTML FORM and Java Applets in the

Web client.

In the case of HTML FORM, the information necessary

to create images, such as the kind and color of the object

are selected from the range of information that was pre-

pared. The connection with the Web server is achieved

by calling the CGI. The call for the CGI to run is initi-

ated when the SUBMIT button for FORM was pushed

on the Web browser, and the information that was se-

lected is sent to the Web server. When sending informa-

tion through the CGI, although it needs to encode the

information using certain rules, the Web browser usually

does it automatically.

It is possible to specify the viewpoint position and the

object location etc. interactively via a Java Applet.

The connection with the Web server is carried out by

calling the CGI using a URLConnection class. Unlike

HTML FORM, encoding of the information is not car-

ried out automatically, so it needs to be encoded using

the encodemethod of the URLEncoder class. After send-

ing the necessary information to the CGI, the Web client

waits until the Web server generates the image. The ren-

dering results are saved as output �les, such as JPEG

and MPEG �les, in the Web server. An HTML �le in-

cluding the rendering results is generated, is sent back

to the Web client, and is displayed in the Web browser.

2.3 Processing on the Web Server

2.3.1 Information Analysis Parser

The information analysis parser in the Web server re-

ceives the information that was given to the CGI from

the Web client. Because the information is given as

a character string, the information analysis parser is

described by the perl language suitable for character

string operation. The information analysis parser that

received the information also decodes it. The decoded

information is processed as a parameter �le that the

rendering application can use. A parameter �le is saved

once at the Web server. The form of the parameter �le

changes with di�erent rendering applications.

2.3.2 Rendering Application

The rendering application is described by C, C++, or

Java, etc., and starts as a call for the external appli-

cation from the information analysis parser written in

perl. POV-Ray (Hallam Oaks Pty., 1995-2000), Radi-

ance (Larson and Shakespeare, 1998), etc., which are

mentioned later, are used for the rendering application.

The active rendering application loads the parameter

�le generated by the information analysis parser, and

performs the rendering.

3 APPLICATIONS OF WEB

RENDERING

To give examples of the applications of this system, a

metaball editing system, a lighting design system and

a morphing system were mounted. The details of each

system are described below.

3.1 Metaball Editing System

A metaball system has the capacity to smoothly fuse

computer-generated balls to render an organic form.

Since remarkable processing capability is required to

achieve this rendering, we built a system that uses the

Web to perform the display and editing of the metaballs.

3.1.1 Functional Outline

This system equips the Web client side with a metaball

editor via a Java Applet. Metaballs are edited with the

editor and the information about their locations, radii,

viewpoint position, etc. is passed on to the Web server.

Image generation is performed by the Web server once it



has received the information, and the result is displayed

by the Web client.

3.1.2 Metaball Editor

The operation window of the metaball editor is shown

in Figure 2. The editor is mounted by Java Applets.

It consists of an edit screen on the right-hand side, an

operation panel and a displaying status area on the left-

hand side.

Figure 2: Metaball Editor

The upper right of edit screen is a perspective view,

and the lower right, the upper left and the lower left

serve as yz, zx, and xy plane views respectively. The ar-

rangement of the current metaball is expressed in per-

spective as a wire frame, and it is possible to change

the viewpoint interactively by dragging with a mouse on

the perspective view area. The button and slide bar for

each function are in an operation panel, and are used for

performing addition of a metaball, movement, deletion,

etc. User can specify parameters of each metaball such

as the location, radius, concentration, color, reection,

attributes of penetration.

3.1.3 Preview

The Web client is also equipped with a Java Applet that

gives a preview of how the arranged metaballs appears.

It is useful for checking whether the fusion of the meta-

balls is performed as intended.

We adopted the method of Nishita and Nakamae (1994)

using the Bezier Clipping method for preview. Although

this method can perform rendering of metaballs at com-

paratively high speed, e�ects of reection, refraction,

shadowing, etc. is omitted. The Web server performs

these e�ects.

3.1.4 Flow of the Rendering Process

The rendering of metaballs is performed by a ray tracing

application called POV-Ray. In POV-Ray, information,

such as the viewpoint position, the location and other

attributes of the objects are loaded from a parameter �le

called the scene �le, and rendering is performed based

on them.

Attribute information, such as the location, radius and

concentration of each metaball, and viewpoint position

are passed to the CGI, and the Web server then re-

ceives information from the editor. In the Web server,

the information received is analyzed by the information

analysis parser and a scene �le is generated based on it.

POV-Ray is called up as an external application, which

then loads the scene �le generated by the information

analysis parser and performs the rendering.

3.1.5 Examples of Output Image

Example images generated by the Web server and shown

in the Web browser are shown in Figure 3.

Number of metaballs is 6 in (a), and number of meta-

balls is 48 in (b) with shadowing.

(a) (b)

Figure 3: Result of Rendering Metaballs in Web Browser

3.2 Lighting Design System

The conventional interior lighting design problem con-

siders both direct lights and interreections of lights,

and for which the ray-tracing method and the radiosity

method are indispensable (on the ray-tracing method,

see Whitted (1980), and on the radiosity method, see

Cohen and Greenberg (1985) and Nisita and Nakamae

(1985)). The number of light sources, luminous intensity

distribution, light source arrangement, and light source

color, etc. are the quantities to be optimized.



Because radiosity method requires high computational

power, our proposed system is conceivable as useful-

ness. So we developed a new lighting design system

using Web.

3.2.1 Functional Outline

The proposed system adopts the approach of latter

which dosen't need trial and error. Also, our system

assumes that all light sources are white. The positions

user can put the light sources are speci�ed in advance.

We cannot put multiple light sources at the same po-

sition. In the optimization process, the system decides

where to put a light source and which type of light source

to use.

First, the user determines a viewpoint, and speci�es il-

lumination value in several points in a room using Java

Applet. Information, such as a speci�ed viewpoint posi-

tion and illumination values, is passed to the Web server.

The Web server speci�es the positions and the types of

light sources, which ful�ll the illumination value of each

point passed from the Web client in the given viewpont

position, by optimization. According to the speci�ed

position and type of light sources, a �nal image is gen-

erated and it is sent to the Web client.

3.2.2 Calculation and Optimization of Illumi-

nation Distribution

When the space is lit by light sources, the illuminance

values in the speci�ed regions increase. To get these val-

ues, the Web server renders images for each light source.

We use the rendering application called Radiance. In

each image, only one light source is turned on. We call

these images intermediate images. By using these im-

ages, we can get the illuminance values of the speci�ed

regions lit by each light source.

The Web server measures the extent to which the calcu-

lated solution satis�es the illuminance condition speci-

�ed by the user as follows. First, the Web server calcu-

lates the square of the di�erence between the calculated

illuminance and the user speci�ed illuminance at all po-

sitions where the user speci�ed illuminance values which

are sent from the Web client. Next, the Web server sums

up the squares. We call this value the objective function.

This objective function is the di�erence between the cal-

culated solution and the speci�ed illuminance condition.

Therefore, by minimizing this objective function, we can

get the optimum solution.

Although the method which used Hop�eld Neural Net-

work (Takahashi et al., 1993), the method using the ge-

netic algorithm (Dobashi et al., 1998), etc. were in the

optimization technique, we adopted the chaotic neural

network (Aihara et al., 1990). The chaotic neural net-

work is superior to the Hop�eld neural network because

it has the ability to escape from local minima. If we use

the Hop�eld neural network, we must choose by trial

and error the initial conditions in order to prevent the

network from falling into a local minimum. In contrast,

if we use the chaotic neural network, the trial and error

is not required and we have more possibilities of �nd-

ing the optimum solution because of the chaotic neural

network's ability to escape from local minima.

Since the position and type of light source which should

be turned on are determined by optimization, the Web

server generates image using Radiance. The generated

image is sent to the Web client.

3.2.3 An Example of Output Image

An example image rendered by the Web server and

shown in the Web browser is shown in Figure 4. The

light source position was limited to 12 places, and types

were limited to four types, 60W electric bulb, 100W elec-

tric bulb, 60W uorescent light, and 100W uorescent

light.

Figure 4: An Example of Lighting Design in Web

Browser

3.3 Morphing System

Morphing is a technique that makes an animation that

changes smoothly between two input images (calles the

source image and the target image). For making an-

imation, user speci�es the correspondence relationship



between the source image and the target image, and

then two images are interpolated and several intermedi-

ate images are generated. We construct such a system

that the Web server generates an animation using mor-

phing.

3.3.1 Functional Outline

In this system, the user speci�es the correspondence

relationship between the source image and the target

image by using Java Applet on the Web client, and

the information about the correspondence relationship

is passed to the Web server. The Web server performs

generating animation as an MPEG �le once it has re-

ceives the information, and the result is displayed by the

Web client.

3.3.2 Java Applet for Correspondence Rela-

tionship Speci�cation

The appearance of the Java Applet for correspondence

relationship speci�cation is shown in Figure 5. The

correspondence-related speci�cation changes with di�er-

ent morphing techniques. Here, the user can make a

choice between the mesh warping (Wolberg, 1990) and

the �eld morphing (Beier and Neely, 1992).

Figure 5: Java Applet for Correspondence Relationship

Speci�cation

First, the source image and the target image are loaded

and the appropriate morphing technique is chosen. In

the mesh warping, a mesh is displayed on the source im-

age and the target image, the control point is dragged

with a mouse, and a correspondence relationship is spec-

i�ed. The number of divisions on the mesh can also be

selected. In the �eld morphing, a correspondence re-

lationship is speci�ed by the set of the line segments.

The user can perform addition, movement, and dele-

tion of a line segment. Moreover, the preset example

correspondence-related data to the source image and the

target image are available. Once the correspondence re-

lationship of the image is decided, the information will

be sent to the Web server.

3.3.3 Animation Generation

The Web server which received correspondence-related

information from the Web client starts the morphing

application, interpolates the source image and the tar-

get image based on correspondence-related information,

and generates several intermediate images. The gener-

ated intermediate images are then saved and are passed

to the MPEG �le encoding application. The MPEG �le

encoding application loads the stored images and gener-

ates an MPEG �le. This MPEG �le is sent to the Web

client in the form of an embedded link in HTML so that

it can download from the Web client side.

3.3.4 An Example of Output Image

The source image, the target image and parts of the

intermediate images are shown in Figure 6. Sixteen in-

termediate images are generated when using the �eld

morphing.

source image target image

intermediate images

Figure 6: An Example of Morphing

4 CONCLUSION

In this paper, a system that creates CG images via the

Web has been proposed, and some examples of the sys-

tem were shown. A computer that has a low processing

capability can obtain a high quality image by perform-

ing the rendering on the Web server.



We intend to create various other examples of the system

and to extend the �elds of applications in the future.

ACKNOWLEDGMENTS

We would like to express our appreciation for the help

given by Mr. Nanba of the Nishita Lab. for his assis-

tance with a basic experiment of a lighting design, and

to Mr. Koiso of the Nishita Lab. for his assistance with

the morphing.

REFERENCES

Aihara, K., Tanabe, T. and Toyoda, M., 1990, \Chaotic

neural networks", Phys. Lett. A, 144, 6, 7, pp.333-340.

Beier, T. and Neely, S., 1992, \Feature-based im-

age metamorphosis", Computer Graphics, Vol.26, No.2,

pp.35-42.

Cohen, M. F. and Greenberg, D. P., 1985, \The Hemi-

Cube: A Radiosity Solution for Complex Environ-

ments", Computer Graphics, Vol.19, No.3, pp.23-30.

Dobashi, Y., Nakatani, H., Kaneda, K. and Yamashita,

H., 1998, \An Interactive Lighting Design System Inte-

grating Forward and Inverse Approach", The Institute

of Image Electronics Engineers of Japan, Vol.27, No.4.

Hallam Oaks Pty. Ltd., 1995-2000, \POV-Ray - the Per-

sistence of Vision Ray-tracer", http://www.povray.org/

Larson, G. W. and Shakespeare, R., 1998, \Render-

ing with Radiance", Morgan Kaufmann Publishers Inc.,

ISBN 1-55860-499-5.

Nishita, T. and Nakamae, E., 1985, \Continuous Tone

Representation of Three-Dimensional Objects Taking

Account of Shadows and Interreection", Computer

Graphics, Vol.19, No.3, pp.23-30.

Nishita, T. and Nakamae, E., 1994, \A Method for Dis-

playing Metaballs by using Bezier Clipping", Computer

Graphics Forum, Vol.13, No.3, pp.271-280.

NTT DoCoMo Inc., 2002, \Java Contents",

http://www.nttdocomo.co.jp/english/p s/i/java/

Takahashi, K., Kaneda, K., Yamanaka, T., Yamashita,

H., Nakamae, E. and Nishita, T., 1993, \Lighting De-

sign in Interreective Environments Using Hop�eld Neu-

ral Networks", The Illuminating Engineering Institute of

Japan, Vol.17, No.2.

Whitted, T., 1980, \An Improved Illumination Model

for Shaded Display", Comm. ACM, 23, 6, pp.343-349.

Wolberg, G., 1990, \Digital image warping", IEEE

Computer Society Press.

ABOUT THE AUTHORS

Yoshinori Mochizuki, Dr., is a Research Associate of

Computer Science Department at the University of

Tokyo. His research interest is Computer Graphics. He

can be reached by e-mail: mochi@is.s.u-tokyo.ac.jp, or

trough postal address: 7-3-1, Hongo, Bunkyo-ku, Tokyo,

113-0033, Japan.

Tomoyuki Nishita, Dr., is a Professor of Complex Sci-

ence and Engineering Department at the University of

Tokyo. His research interests are Computer Graphics in-

cluding Lighting Models, Hidden-surface Removal, and

Antialiasing. He can be reached by e-mail: nis@is.s.u-

tokyo.ac.jp, or trough postal address: 7-3-1, Hongo,

Bunkyo-ku, Tokyo, 113-0033, Japan.


