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In this paper, the model of volcanic clouds for computer graphics using the Coupled 

Map Lattice (CML) method is proposed. In this model, the Navier-Stokes equations are 
used, and the equations are solved by using the CML method that can be applied as an 
efficient fluid solver. Moreover, to generate desired shape of volcanic clouds, some pa-
rameters that allow intuitively control of the shape are provided. Hence, in this system, 
the behavior of the volcanic clouds can be calculated in practical calculation time, and 
by only changing some parameters various shapes of the volcanic clouds can be gener-
ated. Therefore, photo-realistic images/animations of various shapes of volcanic clouds 
can be created efficiently by the proposed approach. 
 
Keywords: volcanic clouds, coupled map lattice, modeling, visualization, animation, 
computational fluid dynamics, cellular automaton 

 
 

1. INTRODUCTION 
 

The modeling of volcanic clouds is useful for natural disaster simulations, enter-
tainment (e.g. games, movies), etc. However, there is not much research on the modeling 
of volcanic clouds. Especially, in the field of computer graphics, this kind of research has 
almost not been done so far. Although there are several commercial modeling products, 
for example [33], that can generate volcanic cloud images, they can only obtain the mo-
tion of volcanic clouds according to the orbits of some particles that are set by profes-
sional users. Therefore, we propose a modeling method for volcanic clouds using the 
Coupled Map Lattice (CML) method. The CML method [15, 16, 27-31] is one kind of 
cell dynamics, which generates patterns. The advantages of using the CML method are: 
(1) it is easy to implement and (2) it has low computational cost. Moreover, to generate 
desired shape of volcanic clouds, some parameters that allow intuitive control of the 
shape are provided, as is a graphical user interface (GUI) for interactively setting of the 
parameters. The goals of this approach are: (1) the realistic behavior of volcanic clouds 
can be represented efficiently; (2) the various shapes of volcanic clouds can be generated 
by changing only several parameters. 
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2. RELATED WORK 

Although there is almost no research on modeling of volcanic clouds in the field of 
computer graphics, there is much research on complex behavior of fluids such as smoke 
[5, 7, 21], clouds [1, 2, 9, 13, 18], water [4, 6, 8], flames [17, 20, 32], etc. 

Kajiya and Herzen proposed a simulation method for cloud by solving the Na-
vier-Stokes equations [13]. However, at that time (1984), they could do calculations on a 
small number of voxels due to the lack of the computational ability. Therefore their 
method can not represent a realistic cloud. Foster and Metaxas proposed a method that 
can generate realistic motion of turbulent smoke on relatively small number of voxels [7], 
but this method is stable only when the time step is very small and costs a lot of time for 
the calculation. Stam introduced the semi-Lagrangian advection scheme to calculate the 
advection term of the Navier-Stokes equations [21]. By using the semi-Lagrangian ad-
vection scheme, it is possible to calculate the advection term of the Navier-Stokes equa-
tions stably even if the time step is large. Fedkiw et al. provided a technique called vor-
ticity confinement that is applied to Stam’s model [5]. The vorticity confinement can 
represent small-scale vortexes lost during the numerical calculation process (refer [22] 
for details). However, the methods provided by Stam and Fedkiw et al. were premised on 
a relatively small space such as inside a room. Therefore their methods cannot take some 
factors which are related to height, like the variation of the atmospheric density with re-
spect to height, into consideration. To overcome this difficulty, we introduced some pa-
rameters that are functions of height, although the fluid solver of our model is similar to 
the solver proposed by Fedkiw et al. 

The CML method was originally developed by Kaneko and is an extended method 
of cellular automaton [15]. Yanagita and Kaneko proposed a method for the modeling 
and characterization of cloud dynamics using the CML method [31]. Miyazaki et al. ex-
tended their work and applied it to the modeling of clouds [18]. Their method can gener-
ate realistic clouds in a practical calculation time. However, the method provided by Mi-
yazaki et al. is designed only to animate clouds, and cannot be applied to volcanic clouds 
directly. 

In the field of earth and planetary sciences, there are many papers about the dynam-
ics and modeling of volcanic clouds. One of the significant researches is proposed by 
Woods [25]. He analyzed the dynamics of the vertical structure of volcanic clouds, and 
proposed a one-dimensional model of volcanic clouds. Woods’ model was followed by 
Dobran and Neri [3], Woods and Bower [26], and Neri and Macedonio [19]. However, 
since the models are one-dimensional, it is hard to apply them to three-dimensional 
simulations directly. Valentine and Wohletz proposed an axisymmetric two-dimensional 
model of volcanic clouds [24]. Moreover, their model was followed by Ishimine and 
Koyaguchi [11], Ishimine [12], and Susuki [23]. Their works made great progress since 
they made it possible to visualize the shapes of volcanic clouds. However, since their 
models are still axisymmetrically two-dimensional, they are also hardly to be directly 
applied to three-dimensional simulations. Although Suzuki suggested that the model 
proposed in [23] could be extended to be three-dimensional, the computational cost is too 
expensive. 
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3. BASIC IDEA 

There are many factors that decide the shape of volcanic clouds. Among these fac-
tors, the eruption magnitude, buoyancy, decrease in volcanic cloud density, and tem-
peratures of the magma and volcanic clouds are the most important. Since the ascending 
current due to the temperature of the magma can be considered to be the eruption veloc-
ity, and the buoyancy due to the temperature of the volcanic clouds can be considered to 
be the buoyancy generated by the difference between the volcanic cloud density and the 
atmospheric density. Hence, the temperatures of the magma and the volcanic clouds can 
be simplified to enhance simulation speed. Therefore, the proposed model is designed by 
taking the following important factors that decide the shape of the volcanic clouds. 

∑ Eruption magnitude: The eruption magnitude is decided by the initial velocity and 
density of volcanic clouds, and it depends on the scale of the volcanic clouds. 

∑ Buoyancy: The buoyancy is generated by the difference between the volcanic cloud 
density and the atmospheric density. The typical conically shaped clouds are generated 
due to the buoyancy. 

∑ Decreasing of the volcanic cloud density: The volcanic cloud density can be de-
creased due to the loss of pyroclasts (fragments of magma). The diversities of the vol-
canic cloud shapes due to the differences of the contents inside the clouds are decided 
by the variety in the distribution of the loss of the pyroclasts. 

Moreover, we make our model efficient and stable by using stable fluid solvers, 
which include the CML method that is a qualitative and efficient solver, and the 
semi-Lagrangian advection scheme that is a stable solver even if the time step is large. 

4. MODEL 

4.1 Evolution of Velocity Field 

Since the atmospheric fluid and the volcanic clouds have small viscosity, and the 
eruption velocity of the volcanic clouds is less than the speed of sound, it is assumable 
that the following non-viscosity Naivier-Stokes equations can be used to describe the 
time evolution of the velocity field. 

∇ ⋅ u = 0,                                                          (1) 

∂

∂
= - ◊— -— +

u
u u f

t
p( ) ,                                              (2) 

where u is a velocity vector, p is the pressure, and f is an external force that is applied to 
the velocity field. Eq. (1) means that the inflow and the outflow of a unit cell are bal-
anced, and is called the “continuity equation”. This equation is a constraint which pro-
jects the velocity vector to the divergent free field. The first term of the right hand of Eq. 
(2) means the advection of the velocity vector, and is called the “advection term”. The 
second term means the variation of the velocity caused by the gradient of the pressure, 
and is called the “pressure term”. The third term means that the velocity is varied by the 
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external force, and is called the “external force term”. In the proposed method, Eq. (1) 
and the pressure term of Eq. (2) are approximated by using the CML method. That is, the 
following approximated Navier-Stokes equation is obtained. 

( ) ( )
t

η
∂

= − ⋅ ∇ + ∇ ∇ ⋅ +
∂

u
u u u f ,                                       (3) 

where η is a positive constant which means the rate of diffusion, and is called the “diffu-
sion coefficient”. Actually, the diffusion coefficient controls the scale of vortexes.  

The approximated Navier-Stokes equation does not need iterative calculation to 
solve the continuity and the pressure effect, although iterative calculation is generally 
needed to solve the Poisson equation in other methods. 

4.2 Evolution of Volcanic Clouds 

Volcanic clouds are transported by the atmospheric fluid, and the volcanic cloud 
density is decreased due to the loss of the pyroclasts. Hence, the following equation for 
volcanic cloud density ρ can be defined. 

( ) ( )z
t

ρ
ρ κ ρ

∂
= − ⋅ ∇ −

∂
u ,                                            (4) 

where ( )zκ  is called the “decreasing rate” and should be set with the following two 
considerations. 

∑ Near the vent, the volcanic clouds include many large pyroclasts called the “volcanic 
blocks”. Therefore, ρ decreases rapidly due to the fall of the volcanic blocks. To simu-
late this phenomenon, ( )zκ  needs to be set large in this region. 

∑ In a higher region, the volcanic clouds consist of many small pyroclasts called “vol-
canic ash” and air, and then the pyroclasts are lost slowly. Therefore, ( )zκ  needs to 
be set small in this region. 

 
The diversity of the volcanic cloud shapes due to the differences of the constituents 

of the volcanic clouds can be represented by setting ( )zκ . 

4.3 Buoyancy 

Buoyancy occurs due to the difference between the volcanic cloud density and the 
atmospheric density, and affects the velocity field. The buoyancy fbuoy is defined by Eq. 
(5). When the vertical component of fbuoy becomes negative, buoyancy works vertically 
downward. In this case, fbuoy works as gravity. 

fbuoy = α (ρatm(z) − ρ)z,                                              (5) 

where α is a positive constant which controls the strength of the buoyancy, z is a verti-
cally upward unit vector, and ρatm(z) is the atmospheric density, which is defined as an 
exponential function of height as: 
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0
( ) exp

atm

e

z
z

H
ρ ρ= −

 
 
 

,                                            (6) 

where ρ0 is the atmospheric density at the sea level (z = 0), and He is the degree of varia-
tion of atmospheric density with respect to height, and called the “scale height”. 

Buoyancy plays an important role in deciding the shape of the volcanic clouds, and 
the following dynamics generate the conically shaped clouds. 

∑ In the region where height is low is called the “gas thrust region”, the atmospheric den-
sity is less than the volcanic cloud density. Thus, the perpendicular component of fbuoy 
becomes negative, and the buoyancy works perpendicularly downward. However, the 
momentum of the eruption is more dominant than buoyancy. Therefore, volcanic 
clouds are delivered upwards. 

∑ In a higher region which is called the “convective region”, the atmospheric density is 
larger than the volcanic cloud density. Thus, the perpendicular component of fbuoy be-
comes positive, and the buoyancy works perpendicularly upward. Hence, the volcanic 
clouds are delivered upwards. 

∑ The region which is higher than the convective region is called the “umbrella region”, 
where the atmospheric density and the volcanic cloud density are almost balanced. 
Therefore, fbuoy becomes almost 0, and the volcanic clouds are no longer delivered up-
wards. 

The proposed approach can simulate realistic volcanic cloud behavior by satisfying 
these dynamics. 

5. FLUID SOLVER 

5.1 Setting of Analysis Space 
 

The analysis space is represented as nx × ny × nz voxels. Each voxel is a cube with a 
uniform volume. The velocity vector u and the volcanic cloud density ρ are defined as 
the state variables at the center of each voxel. In the initial state, u is set to a small value 
randomly, and ρ is set to zero. However, for the voxels located in the mountain (the 
hatched squares in Fig. 1), u is set to a zero vector. Then, the decreasing rate ( )zκ  and 
the strength of the side wind fwind(z) can be defined by dragging the corresponding con-
trol points of the Bézier curves (the dots in Fig. 2) of a GUI shown in Fig. 2. The hori-
zontal direction of fwind(z) can be changed. The atmospheric density ρatm(z) is defined as 
Eq. (6), and is shown in the GUI. The horizontal and vertical axes of the GUI are the 
standardized value of each function and height, respectively. In the GUI, curve-a denotes 
a decreasing rate, curve-b denotes the atmospheric density, and curve-c denotes the 
strength of the side wind. Finally, the eruption velocity usrc and the initial volcanic cloud 
density ρsrc that decide the eruption magnitude are assigned to the voxels corresponding 
to the vent (the circle in Fig. 1). It is also possible to make the volcanic clouds erupt with 
a spread. In our method, by changing only these parameters, to represent the diversity of 
the volcanic cloud shapes can be represented. 
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Fig. 1. Outline of the analysis space.          Fig. 2. The GUI for setting the functions of  

height. 

 
5.2 Sequential Solver 
 

The time evolution of the volcanic cloud behavior can be obtained by iterating as 
follows. In these processes the velocity vector u and the volcanic cloud density ρ are 
updated. 

 
1. Add force: “Add force” is the process of adding an external force to the velocity fluid. 
2. Advect: “Advect” is the process to advect the state variables. 
3. Pattern: “Pattern” is the process of generating vortex patterns using the CML method. 
4. Decrease: “Decrease” is the process of decreasing the volcanic cloud density with 

respect to the loss of the pyroclasts. 
 
5.2.1 Add force 
 

In the Add force process, the effect of the external force as the third term of the right 
hand side of Eq. (3) is calculated. In our method, the external force f is the sum of the 
buoyancy and the strength of the side wind fwind(z). Hence, by assuming that f is un-
changeable within a time step t∆ , the equation for updating the velocity vector u is: 

*
1 ( ( ))buoy wind z t= + ∆u u f + f ,                                           (7) 

where *
1u  is the updated velocity vector in this process. 

 
5.2.2 Advect 
 

In the Advect process, the effects of the advection as the first term of the right hand 
of Eq. (3) and the first term of the right hand of Eq. (4) are calculated. For this calcula-
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tion, we use the semi-Lagrangian advection scheme. As illustrated in Fig. 3, a path p(x, s) 
is defined as a parametric function of time parameter s by tracing a particle, which is 
located in position x backwards along the velocity field at time t. Thus, p(x, s) represents 
the position where the particle existed at time (t − s). 

 
Fig. 3. Path setting in the semi-Lagrangian advection scheme. 

 
The state variables at position x at time (t + ∆t) are advected from position p(x, ∆t). 

Hence, the equations for updating the state variables are: 

* *
2 1( ) ( ( , ))t= ∆u x u p x ,                                               (8) 

*
1( ) ( ( , ))tρ ρ= ∆x p x ,                                                (9) 

where *
2u  and *

1ρ  are the updated velocity vector and the updated volcanic cloud 
density in this process, respectively. 

5.2.3 Pattern 

In the Pattern process, the effect of the generating vortex patterns as the second term 
of the right hand of Eq. (3) is calculated. The CML method is used for this calculation. 
The equation for updating the velocity vector *

2u  is: 

* *
2 + ( ) tη= ∇ ∇ ⋅ ∆u u u ,                                             (10) 

where u* is the updated velocity vector in this process, and also the final updated velocity 
vector in the all sequential processes. A discrete version of Eq. (10) is shown in Eq. (11). 
Here, we only describe the equation for updating ui,j,k, which is the u component of the 
velocity vector u(= (u, v, w)) of voxel (i, j, k). 

u*
i,j,k = u*

i,j,k + h{(ui+1,j,k + ui-1,j,k - 2ui+1,j,k) + (vi+1,j+1,k - vi+1,j-1,k - vi-1,j+1,k + vi-1,j-1,k + 
wi+1,j,k+1 - wi+1,j,k-1 - wi-1,j,k+1 + wi-1,j,k-1)/4}Dt,                        
(11) 

where *
, ,i j ku  is the u component of the velocity vector of the voxel (i, j, k) after being 

updated by the Pattern process. The v and w components can be updated similarly. 

5.2.4 Decrease 

In the Decrease process, the decrease in volcanic cloud density as the second term 
of the right hand of Eq. (4) is calculated. The equation for updating the volcanic cloud 
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density *
1ρ  is: 

* *
1 ( )z tρ ρ κ ρ= − ∆ ,                                               (12) 

where ρ* is the updated volcanic cloud density in this process, and also the final volcanic 
cloud density in the all processes. 

u* and ρ* are the velocity vector and the volcanic cloud density after updated while 
a time step ∆t, respectively. 

6. RESULTS 

The images generated by the proposed method are shown in Figs. 4-7. Figs. 4 and 5 
show the volcanic clouds when there is no side wind. The relative profiles of the height 
function are also shown in Figs. 4-6. Fig. 4 shows the case when the decreasing rate in 
the gas thrust region is set to a relatively large, so that the volcanic clouds include many 
large pyroclasts. Conical volcanic clouds are generated as a result. Fig. 5 shows the case 
when the decreasing rate in the gas thrust region is set to be relatively small, hence the 
volcanic clouds consist of small pyroclasts and air. Spreading volcanic clouds are gener-
ated as a result. Fig. 6 shows a sequence of images of an animation of the volcanic clouds 
affected by side wind. The parameters except the strength of the side wind are set as in 
Fig. 4. The sharpness of the conic shape of the volcanic clouds depends on the decreasing 
coefficient in the gas thrust region (curves-a in Figs. 4-6), and the curved condition of the 
volcanic clouds can be controlled by adjusting the strength of the side wind (curve-c in 
Fig. 6).  
 

   

Fig. 4. Conical volcanic clouds generated by the proposed method. The diffusion coefficient  
(curve-a) when z is small was set relatively large. 
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Fig. 5. Spreading volcanic clouds generated by the proposed method. The diffusion coefficient  
(curve-a) when z is small was set relatively small. 

 
All of the images are visualized as the simulation results on 100 × 100 × 100 voxels, 

by using the rendering method proposed by Dobashi et al. [14]. The computational time 
of the simulation was approximately 1 second per time step on an Intel Pentium 4 2.8 
GHz CPU machine, and the computational time was almost proportion to the number of 
voxels. When the CML method is not used, the simulation time is several seconds at least 
depending on the Poisson equation solver. 

Fig. 7 shows photographs of real volcanic clouds and the images of volcanic clouds 
generated by the proposed method for comparison. The shapes of clouds’ outline of the 
photographs are similar to the images generated by the proposed method. This can show 
the representation ability of our model. 

7. CONCLUSIONS 

In this paper, a method for modeling volcanic clouds using the CML method is pre-
sented. The major features of our method are: 

 
∑ The realistic behavior of volcanic clouds is represented by considering the eruption 

magnitude decided by the eruption velocity and initial volcanic cloud density, the 
buoyancy generated by the difference between the volcanic cloud density and the at-
mospheric density, and the decreasing of the volcanic cloud density due to the loss of 
the pyroclasts. 

∑ Various shapes of volcanic clouds can be generated by changing only some parameters. 
∑ An efficient simulation is achieved by using the CML method. 
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1500th frame                      The side wind (curve-c) is added. 

     
250th frame                 500th frame                 750th frame 

     
1000th frame                 1250th frame                1500th frame 

Fig. 6. Volcanic clouds affected by a side wind. 
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Images generated by the proposed method.                Photographs. 

Fig. 7. Comparison photographs of real volcanic clouds and volcanic clouds generated by the  
proposed method. 

 
To enhance the reality of the images generated by our method, we should take ac-

count the expansion of the volcanic clouds due to the mixing of the pyrocalsts and the 
surrounding air into the model. Moreover, to reduce the calculation time of the simula-
tion, it is a good idea to implement the proposed model by using graphics hardware. Har-
ris et al. proposed a fast calculation method of CML using graphics hardware [10], al-
though graphics hardware is generally used for rendering. The implementation of the 
CML part of the proposed model using graphics hardware will be a part of future work. 
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