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Abstract
Environment illumination, which is a complex
and distant lighting environment represented by
images is often applied to create photo-realistic
images. However, creating photo-realistic ani-
mations under environment illumination is ex-
ceedingly compute intensive. The Precomputed
Radiance Transfer (PRT) methods achieve real-
time rendering under environment illumination,
however, these methods only have a limited ap-
plication in animation because the objects in the
scene cannot be moved or rotated. In this pa-
per, we propose a method for rendering photo-
realistic animations of dynamic scenes under en-
vironment illumination in real time. We no-
tice the fact that when objects are moved or
rotated, changes of radiances occur mainly in
the regions of shadows cast by other objects.
Our method makes a distinction between self-
shadow and shadows cast by other objects and
computes these two kinds of shadows efficiently.

Keywords: deferred shadowing, photo-realistic
animation, real-time rendering, environment il-
lumination

1 Introduction

Generating photo-realistic animations in real
time is one of the most challenging issues in
computer graphics. Recently, complex and dis-
tant lighting environments represented by im-
ages (environment illumination) are often used
to render photo-realistic images. Typical ap-
proaches such as ray tracing are generally ap-
plied to render images under environment illu-
mination, however, rendering animations in real
time is difficult to accomplish due to the high
computational cost.

Sloan et al. [1] proposed the Precomputed
Radiance Transfer (PRT) method for real-time
rendering under low-frequency environment il-
lumination. Afterwards, Ng et al. [2][3] pro-
posed PRT methods for high-frequency environ-
ment illumination. However, these PRT meth-
ods have a serious limitation, that is, they can be
applied only to static scenes.

In animations, we usually deal with dynamic
scenes composed of several movable objects.
Therefore, it is very important for PRT methods
to deal with dynamic scenes and to render the
scenes in real time in order to make PRT meth-
ods being widely applied to general applications
such as virtual reality and games. In this paper,
we propose an efficient method which is able to
render dynamic scenes in real time under envi-
ronment illumination. Our algorithm deals with
dynamic scenes lit by direct illumination from
an environment illumination. Each object in the
scene has diffuse or glossy surface composed of
triangle meshes and we assume that the shape
of each object is not deformable. Each object is
allowed to perform translation or rotation.

Based on the fact that when objects are trans-
lated or rotated, rapid changes of radiances tend
to occur in the regions of shadows cast by
other objects rather than self-shadow (see Fig-
ure 1), we first render the scene taking into
account only self-shadow. Then, we subtract
the radiance obscured by other objects after-
wards, resulting in shadows cast by other ob-
jects. The proposed method uses some approx-
imations when computing shadows, as a result,
the resulting shadows are not completely physi-
cally correct. However, through experiments we
verified that our method produces images with
high quality shadows.



We compute shadows cast by other objects
only in the visible regions of the scene. This
approach is similar to the deferred shading tech-
niques [4] which perform expensive rendering
only in the visible regions, and therefore, we
call our approach deferred shadowing. We also
describe an implementation of our method on a
modern GPU, and show that our method accom-
plishes real-time rendering. The advantages of
our new method are as follows.

� Applicable to dynamic scenes.
� Real-time rendering using GPU.
� High quality rendering of soft shadows.

2 Related Work

In this section, we review two categories of com-
puter graphics research that are closely related to
our method, i.e. rendering of soft shadows and
PRT. Soft shadows have important visual effects
since our method is based on environment illu-
mination. PRT is currently the most promising
approach for real-time rendering under environ-
ment illumination.

2.1 Rendering soft shadows

Nishita et al. [5][6] proposed methods for ren-
dering soft shadows for linear light source and
area light source by extending the shadow vol-
ume method. They [7] also proposed a method
for rendering soft shadows under skylight repre-
sented as a dome, which is similar to environ-
ment illumination. However, these methods re-
quire much computational time and are difficult
to render soft shadows in real time.

Recently, there have been many approaches
to generate soft shadows using GPU. Most of
them utilize shadow mapping [8] or shadow vol-
ume [9]. Heckbert and Herf [10] combined a
number of hard shadow images for each receiver
surface to create soft shadow textures. Heidrich
et al. [11] described an algorithm for generat-
ing soft shadows for linear light sources. The
method samples each light source sparsely and
generates separate shadow maps for each sam-
ple point. Soler and Sillion [12] used FFT con-
volution to compute approximate soft shadows.
Agrawala et al. [13] computed soft shadows in
image space, which was, however, not adequate
for interactive rendering. Additionally, several

extentions of the shadow mapping method for
real-time rendering of soft shadows [14][15][16]
were presented.

Akenine et al. [17] and Assarsson et al. [18]
extended the shadow volume method to render
soft shadows using GPU. However, the compu-
tational cost of their methods depend on the ge-
ometry of the objects, which makes them diffi-
cult to render complex objects rapidly. Keller
[19] proposed an efficient and simple approach
which can render realistic images and also cap-
ture soft shadows using GPU. The limitation of
all of the approaches described above is that they
do not consider or they are too slow for comput-
ing shadows under complex environment illumi-
nation.

2.2 Precomputed radiance transfer

Dobashi et al. [20] proposed a method for ren-
dering scenes under skylight using basis func-
tions. Ramamoorthi et al. [21] rendered scenes
under environment illumination in real time us-
ing spherical harmonics. However, shadows
were not taken into consideration. Extending
their method, Sloan et al. [1] proposed PRT
method for real-time rendering of various effects
such as soft shadows, direct and indirect illumi-
nation and caustics. Then, Kautz et al. [22] pro-
posed a method for rendering scenes with arbi-
trary BRDFs. Lehtinen et al. [23] proposed a
method for rendering glossy objects efficiently.
Sloan et al. [24][25] used clustered principle
component analysis for data compression and
combined with BTF to handle meso-structures
on surfaces. Ng et al. [2][3] used wavelet trans-
form instead of spherical harmonics to represent
all-frequency shadows under environment illu-
mination. However, these methods can be ap-
plied only to static scenes since the precomputed
visibilities cannot be changed.

James et al. [26] extended PRT with precom-
puted deformation dynamics to support real-
time interactions in limited deformation space.
Mei et al. [27] tackled translation and rotation
of objects. However, since their approach calcu-
lates the radiance only at each vertex and uses
interpolation to calculate the radiances at the
rest of the locations, dense meshes are needed
in the entire scene to capture rapid changes of
radiances, such as shadows cast by other ob-
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Figure 1: Each object is considered separately, for
instance, object A and object B in this
figure. Then, the occlusions are distin-
guished between self-occlusion and other-
occlusion.

jects. Kautz et al. [28] proposed a method which
can handle deformable objects. However, their
method computes the radiance at each vertex
and can produce only low-frequency shadows.
Kontkanen and Laine [29] rendered dynamic
scenes in real time. However, they only con-
sider ambient occlusion, therefore, their method
cannot handle environment illumination.

3 Overview

The reason why objects cannot be translated
or rotated in the previous PRT methods is that
the precomputed visibilities are no longer valid
when the scene is changed. To solve this prob-
lem, we consider each object in the scene sep-
arately as shown in Figure 1. Here, we distin-
guish the occlusions as follows.

� Self-occlusion: occlusion due to its own
geometry.

� Other-occlusion: occlusion due to other
objects.

We call the object that causes other-occlusion
(e.g. Object A for Object B in Figure 1), an
occluder. Since the regions of shadows due to
other-occlusion can change rapidly in dynamic
scenes, we separately calculate the radiance due
to self-occlusion and other-occlusion. We ren-
der the scene through the following three steps.

1. Render the scene with the radiance taking into
account only self-occlusion to image 1 (Figure
2(a)).

2. Compute the radiance obscured by occluders
only for the visible regions of the scene and
store the results in image 2 (Figure 2(b)).

3. For each pixel, subtract the value in image 2
from the value in image 1 (Figure 2(c)).

When an object translates or rotates, self-
occlusion does not change because we as-
sume that the shape of each object is not de-
formable. Therefore, we can precompute the
self-occlusion information of each object. In ad-
dition, we can respond to the rapid changes of
radiances by adaptively subdividing the mesh of
the object using the method proposed by Kri-
vanek et al. [30]. Therefore, it is sufficient to
compute the radiance taking into account only
self-occlusion for each vertex and compute the
radiances at the locations other than the vertices
by interpolating the radiances at the vertices.

On the contrary, other-occlusion can change
frequently in dynamic scenes. Since the region
where the other-occlusion changes rapidly can-
not be predicted, uniformly and densely sam-
pled meshes are required in order to deal with
the unpredictable change of the other-occlusion
when we attempt to calculate the radiances only
at the vertices. However, dense meshes are not
efficient in terms of the computational time and
the amount of the precomputed self-occlusion
data. Therefore, instead of vertices, we compute
the radiance obscured by occluders only in the
visible regions of the scene at each pixel.

4 Deferred Shadowing on
Diffuse Surfaces

In this section, we describe the details of our
method on diffuse surfaces.

4.1 Radiance taking into account only
self-occlusion

We first calculate the radiance �� taking into ac-
count only self-occlusion of each object. �� is
calculated for each vertex by using the Sloan’s
method [1]. �� at the ��� vertex �� can be calcu-
lated by using the following equations.

� ����� �
�

�
������� ����� � ��� ��� (1)

������ � ��

����
���

����
����

��
� �

�
� ����� (2)

where �� is the binary visibility information tak-
ing into account self-occlusion (0 means oc-
cluded, otherwise 1), �� is the normal vector of
the ��� vertex, � is the direction vector to unit
sphere, �� � is a positive integer, � is an inte-
ger satisfies ��� � �, �� is the surface diffuse



(a) Rendering result with the radiance (b) Rendering result of the radiance (c) Final result

taking into account only self-occlusion obscured by occluders

Figure 2: The computational process of our method. The scene composed of two objects, a floor and a plane
toy. We first render (a), then render (b) afterwards. Finally, we obtain (c) by subtracting (b) from (a).

albedo, ��
�
� 	�

�
are the coefficients of the en-

vironment illumination and the light transport
function 	 corresponding to each spherical har-
monic basis. Note that we exclude �� from the
precomputation in order to take into account tex-
ture mapping or changes of materials at runtime.
After calculating the radiances of all vertices,
we render the scene and obtain an image tak-
ing into account only self-occlusion as shown in
Figure 2(a).

4.2 Radiance obscured by occluders

After the radiance �� is calculated, we calcu-
late the radiance �� obscured by occluders only
for the visible regions of the scene at each pixel.
Figure 2(b) shows the resulting image that stores
the values of ��. Then, the final radiance � can
be obtained by subtracting the radiance �� from
the radiance �� as shown in Figure 2(c).

���� � ������ ������ (3)

where 
 is the point on the object which is vis-
ible at a pixel. For the sake of simplicity, we
first describe the case when there is only one oc-
cluder. Next, we describe the case of multiple
occluders.

4.2.1 Decomposition of environment
illumination

We divide the environment illumination into
several area light sources �� using the method
proposed by Kollig et al. [31] as shown in Fig-
ure 3 and calculate �� as follows.

����� �
��

�

��
���

�� 	������ ������ � �� ��� (4)

where � is the number of distant area light
sources, � is the total radiosity of area light

Figure 3: Decomposition of the environment illumi-
nation into several regions.

source ��, �� is the direction at the centroid of
light source ��. � is the occlusion ratio which
indicates the portions of the distant area light
source that are not visible from 
 . We rep-
resent the occlusion ratio � as a real number
(0.0 to 1.0, 0.0 means completely visible and 1.0
means completely occluded) in order to obtain
soft shadows with fewer light sources.

4.2.2 Computation of occlusion maps

If we compute � in Equation (4) for each visi-
ble point 
, then the computational cost is high.
To reduce the computational cost, we compute
an occlusion map for each object with respect to
each light source. When computing ��, the oc-
clusion map is projected to the visible region of
the object. The occlusion map is computed as
follows.

As shown in Figure 4, we consider the case
of object � casts shadows on object , with a
light source in direction ��. We set an occluder
plane �� which passes the center of � and per-
pendicular to direction ��. Then, we project �
to this occluder plane. �� and �	 represent the
boundary of �, respectively. To compute the oc-
clusion ratio on , we set a virtual plane �	

which passes the center of  and perpendicu-



Figure 4: The computation of an occlusion map.

lar to direction ��. � �

�
� �

	
is the shadow region

(occlusion ratio ���) resulting by projecting � to
�	 when we treat �� as a parallel light source.
Next, we consider the area of the light source.
Since �� is a distant light source, we can as-
sume that the solid angles of �� as seen from
�� and �	 are the same. The light that passes
through �� will emanate according to this solid
angle, and on �	 the light will emanate in the
region � �

�
� �

�
. This region is the penumbra re-

gion and have the same shape as ��. The occlu-
sion ratio on �	 can be computed by convolv-
ing the resulting shadows (occlusion ratio ���)
with a function with the shape of ��.

To compute the convolution rapidly, the shape
of �� is simplified to a square. The width �����
of the square is determined as follows. First, the
area of the penumbra region ��

�
� �

�
is


������ � ���
��� (5)

where �
�
is the solid angle of the distant area

light source �� and � is the distance between
planes �� and �	 . The width ����� of the
square can be obtained as follows.

����� �
�

������� (6)

By convolving the shadow regions, resulting
from projecting the occluder onto the virtual
plane �	 , with a square area light source hav-
ing width �����, we obtain the occlusion map on
�	 (see Figure 5). Then, we perform orthogo-
nal projection to object . Note that we cal-
culate the occlusion map for each �� and each
object.

4.2.3 Case of multiple occluders

When multiple occluders exist, we cluster the
occluders that are located near to each other as

(a) projected occluder (b) area light source��

(c) simplified area (d) occlusion map
light source

Figure 5: An example of an occlusion map, (a) is the
projected occluder onto the virtual plane,
(b) is the area light source ��, (c) is the
area light source simplified to a square,
and (d) is the occlusion map obtained by
convolving (a) with (c).

one group. Then, we compute an occlusion map
for this group. To compute the occlusion map,
we set the occluder plane to pass through the
center of the group. When there are more than
two groups, we compute an occlusion map for
each group and then combine the results using
the method proposed by Soler and Sillion [12].

4.2.4 Solution to the problem of shadow
calculation

The self-occlusion and the other-occlusion
might exist at the same time when viewing
from a certain position in the direction ��. In
this case, our method considers the occlusion
twice, as a result the calculated radiance be-
comes smaller than the correct radiance.

To solve this problem, as shown in Equation
(7), visibility taking into account self-occlusion
�� at 
 is multiplied to the occlusion ratio �
to eliminate the influence of the other-occlusion
when the self-occlusion exists.

������
��

�

��
���

�� ��������	������ ������ ��� ���

(7)

Using the light transport function 	 , Equation
(7) is transformed to

����� � ��

��
���

�� � ������	������� (8)

Obviously, we need to evaluate 	 at the visible
point 
. The detail algorithm for computing 	

at 
 is described in Section 6.2.



5 Deferred Shadowing on
Glossy Surfaces

In this section, we describe the details of our
method on glossy surfaces.

5.1 Radiance taking into account only
self-occlusion

The radiance on glossy surfaces is also calcu-
lated for each vertex by using spherical harmon-
ics similar to the Sloan’s method [1]. However,
since we only consider direct illumination, we
propose a method that can reduce the amount of
the precomputed data compared to the Sloan’s
method [1]. The radiance ��

� at the ��� vertex
�� of glossy surfaces viewing from direction ��
taking into account only self-occlusion can be
calculated by using the following equation.

��

�������� �

�
�

�ENV����	������ ��������

�������� ��� (9)

where �� is the Phong BRDF, ��� is the reflec-
tion vector. We calculate the coefficients cor-
responding to each spherical harmonic basis of
�ENV and ��. In Sloan’s method [1], �� is rep-
resented as a matrix. However, since we only
consider direct illumination, instead of ��, we
represent the coefficients of �ENV as a matrix. In
this case, the coefficients of �� are represented
simply as a vector. As a result, we can reduce
the amount of the precomputed data since we do
not have to store a matrix for each vertex. The
coefficients of the spherical harmonic basis of
�ENV and �� are then computed as follows.

����

��� �

�
�

�ENV��� �
�
� ��� ��

�

�� ��� ��� (10)

��� ���� �

�
�

�������� �
�
� ��� ��� (11)

The glossy light transport function � is calcu-
lated by using the convolution of spherical har-
monics.

����� � �	������ ��� �� �� �� �����

��� ��
�

�� ���� ��
(12)

Equation (9) is transformed by using Equation
(12) as follows.

��

�������� �

����
���

����
����

����� �
�
� ����������

(13)

� does not change as long as the positional re-
lation between an object and the environment il-
lumination does not change.

5.2 Radiance obscured by occluders

Similar to the case of diffuse surfaces, the ra-
diance ��

� obscured by occluders on glossy sur-
faces can be calculated as follows.

��

������� �

��
���

�� �	���������	������� (14)

To solve the problem as described in Section
4.2.4, visibility �� at 
 is multiplied.

��

������� �

��
���

�� �	��������� ��������	�������

(15)

6 Efficient Calculation Using
GPU

In this section, we explain the implementation
for an efficient computation of our method using
GPU. Currently, we implemented our method on
the OpenGL platform. However, it is also pos-
sible to implement our method on the DirectX
platform.

6.1 Radiance taking into account only
self-occlusion

To compute the radiance taking into account
only self-occlusion on diffuse and glossy sur-
faces efficiently, we propose an implementation
which makes use of the parallel processing capa-
bility of modern GPU. After we compute the ra-
diances taking into account only self-occlusion
at all the vertices, for accuracy, we render the
scene into a 16-bit floating point p-Buffer.

6.1.1 Diffuse surfaces

The radiance �� taking into account only self-
occlusion can be obtained by calculating the in-
ner product in Equation (2). Since this calcula-
tion is independent for each vertex, we can effi-
ciently compute �� by using the programmable
pixel shader which can perform a rendering op-
eration for each pixel on a screen or a texture.

We first prepare a texture (16-bit floating
point p-Buffer) for using pixel shader. This tex-
ture is used to store the radiances and we call
this texture, radiance texture. Each pixel of the
radiance texture is allocated to each vertex of the
object. Then, we compute �� as follows.

1. Send ��
� (Equation (2)) to pixel shader as

shader constant values.



2. Send ��
� (Equation (2)) of a vertex by drawing

a point primitive with a width of one pixel to
the corresponding pixel. Here, � �

� are set as
the attribute values of the point.

3. Compute the radiance �� using pixel shader’s
vectors inner product capability between ��

�

and ��
� for each vertex in the pixel shader.

After performing the above-mentioned com-
putation, the radiance texture stores the radi-
ances of all vertices (without taking into account
the surface diffuse albedo) of each object. When
the scene is rendered, the value of each pixel in
the radiance texture is multiplied with the sur-
face diffuse albedo at the corresponding vertex
and the results are used in the vertex shader.
As long as the relation between each object and
the environment illumination does not change,
we can reuse the same radiance texture for ren-
dering. Only when the objects are rotated, the
coefficients of the spherical harmonic are trans-
formed using the method used in Sloan et al. [1].

6.1.2 Glossy surfaces

For glossy surfaces, the glossy light transport
function � in Equation (12) is first calculated
for each vertex and the result is stored in trans-
port textures which are 16-bit floating point
p-Buffers. To compute �, we have to per-
form a multiplication between a matrix ����

���

(Equation (10)) and a vector ��
�

(Equation
(11)). Since a matrix-vector multiplication can
be performed by computing a vector-vector in-
ner product multiple times, we can employ the
method described in Section 6.1.1. The re-
sulting vectors from the above computation is
convolved with the BRDF kernel by using the
method as shown in Sloan et al. [1]. � does
not change as long as the positional relation be-
tween each object and the environment illumina-
tion and the BRDF at the vertex do not change.
Therefore, the transport textures that store� can
be reused.

Radiance ��

� (Equation (13)) is evaluated by
using �whenever the viewpoint moves. We cal-
culate ��

� based on the diffuse case. The details
for computing ��

� are as follows.
1. Send the viewpoint to pixel shader as shader

constant values.

2. Send the position and the normal vector of each
vertex to the corresponding pixel.

3. Calculate the coefficients corresponding to
each spherical harmonic basis for the reflection
vector at each pixel.

4. Obtain the radiance ��

� through the inner prod-
uct computation between � (obtained from the
transport textures) and the coefficients of the re-
flection vector.

As a result, the radiance texture that stores the
radiances for all vertices can be obtained. The
value of each pixel in the radiance texture is used
in the vertex shader when the scene is rendered.

6.2 Radiance obscured by occluders

To compute the obscured radiance, first we have
to determine the occlusion maps, the visible re-
gions, and finally compute the obscured radi-
ance using the former two information.

6.2.1 Creation of occlusion maps

An occlusion map is computed by projecting oc-
cluders and performing convolution. For fast
computation, we perform the convolution using
GPU. In our method, the convolution is separa-
ble for each dimension because we simplify the
shape of area light sources to a square which can
be regarded as box function and so the compu-
tation cost can be reduced.

When rendering a scene, we can think of com-
puting occlusion maps only for the visible ob-
jects in the scene. However, this approach re-
quires to check the visibility of each object in
each frame and thus complicates the rendering
process. Instead, for each object in the scene, we
compute an occlusion map with respect to each
area light source and store the results in GPU.
Only when the objects in the scene are moved,
we recompute the occlusion maps.

6.2.2 Determination of visible regions

To determine the visible regions, we first ren-
der the scene once and store the depth infor-
mation. Then, we render each object indepen-
dently taking into account the stored depth in-
formation. After the visible regions are deter-
mined, the computed occlusion map for each
light source is then orthogonally projected to
these regions for each object using GPU.



6.2.3 Computation of obscured radiance

The obscured radiances of the visible regions are
stored in 16-bit floating point p-Buffers.

In the diffuse case, the obscured radiance for
each light source (Equation (8)) can be obtained
by multiplying together the value of the pro-
jected occlusion map, the radiosity of each light
source, and the light transport function 	 . As
described in Section 4.2.4, we need to evaluate
	 in the direction of each light source �� for
each visible point 
 in order to overcome the
overlapping problem of the self-occlusion and
the other-occlusion. We first expand 	 in the di-
rection of all light sources in advance for each
vertex of the object, then 	 of each vertex is set
as the vertex attribute and 	 of the visible points
on the objects other than the vertices are inter-
polated using GPU when the scene is rendered.

In the glossy case, to compute ��, we use the
same method used in computing 	 in the dif-
fuse case. �� is evaluated at each visible point

. To add the obscured radiances due to all light
sources, we use the floating point blending [32]
since accuracy is insufficient when we use the
usual blending.

7 Results and Discussion

Our results were computed on a machine with
a 3.2 GHz Pentium 4 processor and a nVIDIA
GeForce 6800 GT graphics hardware. For the
environment illumination, we use the Paul De-
bevec’s light probe images [33]. The size of the
environment illumination is ��� � ���. We use
���-order (36-term) spherical harmonics for dif-
fuse surfaces and ���-order (16-term) spherical
harmonics for glossy surfaces. The sizes of the
images are ���� ��� pixels.

7.1 Shadows quality

We performed several experiments to examine
the quality of the generated shadows. We varied
the number of area light sources to 16, 32, and
64 and the sizes of the occlusion maps to �����,
	
� 	
, and ��� � ���.

Figure 6 shows two of the resulting images
and the reference image rendered using ray trac-
ing method. High-frequency shadows can be
seen in Figures 6 (a) and (b). Most of the time,
we found that our method generates high qual-

ity shadows when we used occlusion maps with
sizes ��� � ���.

For the number of area light sources, gener-
ally, 32 area light sources are sufficient to pro-
duce high quality shadows. In summary, we
found that shadow quality depends on the res-
olutions of occlusion maps rather than the num-
ber of area light sources.

7.2 Rendering performance

We examined the rendering performance (fps)
using our method while changing the rendering
parameters. We performed the experiments us-
ing two scenes, a teapot scene consists of 2421
vertices and a Buddha statue scene consists of
44856 vertices. For each scene, we performed
the experiments twice by setting the object as a
diffuse surface and a glossy surface.

Results of our experiments are plotted in the
graphs shown in Figure 7. For real-time appli-
cation, we found that �� area light sources and
occlusion maps with sizes 	
 � 	
 are appro-
priate in terms of the balance between the ren-
dering speed and the shadows quality. When it
is sufficient to render at interactive rate, occlu-
sion maps with sizes ��� � ��� can be used for
producing a better quality images.

7.3 Rendering dynamic scenes

Based on the facts described in the previous
sections, we rendered animations of two scenes
with �� area light sources and occlusion maps
with sizes ��� � ���. Figure 8 shows the re-
sults. The statistics of the two scenes are shown
in Table 1.

Table 1: Statistics of the rendering examples.

Venus Trumpet
#Vertices 5776 8557
Precomputation time (sec) 85 109
Precomputation data (KB) 813 1212
Average frame rate (fps) 30 25

8 Conclusion and Future Work

In this paper, we have presented an efficient
method that is able to render dynamic scenes un-
der environment illumination in real time. Our
method distinguishes the shadows between self-
shadow and shadows cast by other objects, and



(a) 	
 lights, �
�� �
� (b) � lights, �
�� �
� (c) reference image

Figure 6: Changing the numbers of area light sources and the sizes of the occlusion maps. (a), (b) are the
resulting images with 	
� � area light sources and occlusion maps with sizes �
�� �
�, (c) is the
reference image rendered using ray tracing method.

Figure 7: Statistics of the performance on diffuse surfaces (left) and glossy surfaces (right). The number of area
light sources and the sizes of occlusion maps are (a) ��� 	
� 	
, (b) ��� �� �, (c) ��� �
�� �
�,
(d) 	
� 	
� 	
, (e) 	
� �� �, (f) 	
� �
�� �
�, (g) �� 	
� 	
, (h) �� �� �, (i) �� �
�� �
�.

computes both of them efficiently using GPU.
Through experiments, we showed that the pro-
posed method can render high quality soft shad-
ows fast.

As future work, we are interested in develop-
ing a fast method for rendering dynamic scenes
consist of deformable objects under environ-
ment illumination.
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