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ABSTRACT 
     Recently, computer graphics have been used to 
simulate natural phenomena, such as clouds, fire, and 
ocean waves. This paper focuses on the evolution of 
clouds and proposes a simulation method for dynamic 
clouds. The method makes use of the cellular automaton 
for calculating the density distribution of clouds which 
varies over time. By using the cellular automaton, the 
distribution can be obtained with only a small amount of 
computation since the dynamics of clouds are expressed 
by several simple transition rules. The proposed method 
is applied to animations of outdoor scenes to demonstrate 
its usefulness. 

KEYWORDS: clouds, animation, cellular automaton, 
natural phenomena, simulation. 

1. INTRODUCTION 

     Clouds play an important role when generating 
images of outdoor scenes, flight simulators and so on. 
Displaying clouds in three-dimensional space is 
important since their shapes and colors are different 
depending on the viewpoint and the sun position. There 
have therefore been a lot of methods created to do this [1] 
[2] [3] [4] [5] [6] [7], and using these, photo-realistic 
images can be generated. The major purpose of these 
methods, however, is to generate still images. Meanwhile, 
fascinating animations of clouds with their shapes and 
colors changing are often used in movies, commercial 
films, and so on. Most of these animations are created by 
recording them in advance and replaying them quickly. It 
is useful to create realistic animations by using computer 
graphics. 

     This paper proposes a method for making the 
animation of clouds using the cellular automaton (CA).  
Thalmann also used CA for surface modeling such as 
water surface [8]. Its application to clouds, however, has 
not been demonstrated. The proposed method utilizes a 
numerical model developed by Nagel et al. for simulating 
the growth of clouds. In their model, the simulation can 
be done with a small amount of computation since the 

dynamics are expressed by several simple rules. However, 
since their intention is to investigate the dynamics of 
clouds and the algorithm is not tuned for the visualization 
of clouds, the model has, for our purpose, the following 
disadvantages. (1)Clouds do not disappear. (2)Only 
binary information at a certain point is obtained, that is, 
there are clouds or there are no clouds. Therefore, we 
propose an improved model for creating realistic 
animations. Clouds are extinguished by introducing new 
rules. Continuous distribution is calculated by averaging 
the binary distribution obtained by the simulation. 

     In the following, Section 2 discusses the previous 
work. Next, the basic idea of the proposed method is 
described in Section 3. In Section 4, the numerical model 
developed by Nagel et al. is explained. In Section 5, the 
improved model and the control method are proposed. 
Next, in Section 6, the calculation method for obtaining 
the continuous distribution is proposed. Then, In Section 
7, examples of the proposed method are demonstrated. 
Finally, in Section 8, conclusions of this paper are 
discussed. 

2. PREVIOUS WORK 

     Kajiya et al. proposed a method for animating 
clouds by the numerical simulation of the fluid dynamics 
of the atmosphere [9]. In this method, however, solving 
complicated non-linear equations is difficult, requiring 
special knowledge to set proper boundary conditions. 
Gardner has produced the animation by using 
texture-mapped ellipsoids [2]. However, the scattering 
effects can not be simulated to calculate the color of 
clouds since the method does not create a true 
three-dimensional geometric model. Stam and Fuime 
have developed a method using the diffusion process [10] 
[11]. The method, however, is mainly used for displaying 
smoke and fire, and its application to cloud animation has 
not been demonstrated. Ebert et al. have developed a 
method combining metaballs and a noise function [12]. 
Using the method, an animation of cloud formation is 
created. It seems, however, that the shape of the clouds is 
determined in advance and their visible parts are 
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gradually increased. Moreover, no way to include time as 
a parameter is described. Neyret has proposed a method 
for forming clouds by qualitative simulation [13]. The 
method, however, focuses on simulating the growth of a 
single cluster of clouds and hence is not suitable for 
animation. Kikuchi et al. proposed a method utilizing the 
particle system to make an animation of cumulonimbus 
[14]. Cumulonimbus are formed by a dynamic simulation 
of the particles which takes into account several force, 
such as gravity. This method is also intended to simulate 
cloud growth and is not suitable to the animation of 
clouds with complicated shape transitions. 

     Compared to the previous methods, the proposed 
method has the following advantages. 

 a) Formation and evolution of clouds can be simulated 
by a small amount of computation. 

 b) Evolutionary Dynamics are expressed as simple 
transition rules by using CA. 

 c) Density distribution in three dimensional space is 
obtained. 

3. BASIC IDEA 

     The proposed method is based on the method 
developed by Nagel et al. to simulate the growth of clouds 
using CA [15]. In this method, the simulation space is 
divided into three dimensional grids as shown in Fig. 1. 
At each grid point, three state variables, hum, cld and act 
are assigned which represent vapor, clouds, and the phase 
transition from vapor to clouds. The state of each variable 
is either 0 or 1. The growth of clouds is simulated by 
using simple transition rules. Since the state is either 0 or 
1, the rules can be expressed by the Boolean language. 
Therefore, the simulation requires only a small amount of 
computation. The method has following disadvantages, 
however. 

•  Cloud extinction never occur since cld, after it has 
become 1, remains 1 forever. This means that it is 
impossible to create a dramatic animation including 
cloud formation and extinction. 

•  The simulation output is a binary distribution. 
What we can obtain is no more than there are clouds 
(cld = 1) or, there are not-clouds (cld = 0) at each 
grid point. Therefore, realistic images can not be 
generated since the density distribution in the real 
world is a continuous distribution between 0 and 1. 

     To create realistic animation of clouds, the 
proposed method addresses these problems as follows. 

     First, a new state variable, ext, and its transition 
rules are introduced to realize cloud extinction. In the 
real world, however, formation and extinction occur 

repeatedly. To simulate this, hum, act and ext are 
supplied at every frame using random numbers that obey 
a user-specified probability distribution. Animators can 
control the motion of the clouds in their design of the 
probability function. This achieves simulation of the 
complicated motion of clouds. 

     There are two possible approaches to the second 
problem. One is to extend the simulation process to treat 
continuous values. The other is to calculate the 
continuous distribution based on the binary distribution 
obtained by the simulation. In the first approach, we have 
to develop the new transition rules to take into account 
continuous values. However, the computation time is 
increased since the transition rules no longer have simple 
Boolean expressions. Therefore, in this paper, we choose 
the second approach. Continuous distribution is 
calculated in the post process of the simulation. Using the 
proposed method, the continuous distribution can be 
obtained without increasing the simulation time. 

4. CLOUD GROWTH SIMULATION 
USING CELLULAR AUTOMATON 
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FIGURE 1: SIMULATION OF DYNAMIC CLOUDS USING CA.
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     The simulation method developed by Nagel et 
al.[15] is explained in this section. As mentioned before, 
the simulation space is represented by 3D grids, and three 
state variables, hum, act, and cld, are assigned at each 
grid point (see Fig. 1(a)). The state of each variable is 
either 0 or 1. Their grid status (i,j,k) at time t+1 are 
calculated by the status at time t using the following 
transition rules. 

 act(i,j,k,t+1) = .NOT.act(i,j,k,t).AND.hum(i,j,k,t) 
             .AND. fact( • )   (1) 

  cld (i,j,k,t+1)= cld(i,j,k,t).OR.act(i,j,k,t) 
 (2) 

  hum(i,j,k,t+1)=hum(i,j,k,t).AND..NOT.act(i,j,k,t) (3) 

where, fact( • ) is a Boolean function and its value is 
calculated by the status of act around the grid. Fig. 1(a) 
shows the above transition rules. act becomes 1 at time 
t+1 if both of the hum and fact( • ) are 1 at time t. Then 
cld becomes 1 at time t+2. In [15], the following function 
is used for fact( • ) by taking into account the fact that 
clouds grow upward and horizontally. 

  fact( • )=    act(i+1,j,k,t).OR.act(i-1,j,k,t) 
         .OR.act(i,j+1,k,t).OR.act(i,j-1,k,t) 
         .OR.act(i,j,k+1,t).OR.act(i,j,k-1,t)) 
         .OR.act(i+2,j,k,t).OR.act(i-2,j,k,t) 
         .OR.act(i,j+2,k,t).OR.act(i,j-2,k,t) 
         .OR.act(i,j,k-2,t)   (4) 

     That is, as shown in Fig. 1(b), fact( • ) returns to 1 
if the state of act of one of the shaded grids around the 
grid (i, j, k) is 1. By changing the rule of fact( • ), it is 
possible to simulate various effects. For example, we 
found that the following rule is suitable for clouds 
advected by winds (see Fig. 1(c)). 

 fact( • )= act(i+1,j,k,t).OR.OR.act(i,j,k+1,t) 
         .OR.act(i-1,j,k,t).OR.act(i,j-1,k,t) 
         .OR.act(i,j,k-1,t)).   (5) 

In this case, the wind blows toward the plus direction of y 
axis. 

     Beginning from initial random status, cloud growth 
is simulated by updating the state of each variable using 
Eq. 1 through 3. The initialization is as follows. First, 
hum is initialized by using uniform random numbers of 
probability hump . That is, hum is set to 1 if a random 
number between 0 and 1 is less than hump , otherwise 
hum is set to 0. Similarly, act is set to either 0 or 1 by 
using the probability actp , but it cannot be set to 1 when 
hum is 0. cld is set to zero. 

     In this method, act propagates with changing vapor 
(hum=1) into clouds (cld=1). For further detail, see [15]. 

5. EXTENSION TO DYNAMIC CLOUD 
SIMULATION 

The method described in the previous section has the 
advantage of low computational cost since the Boolean 
operations are used for the simulation. However, there are 
serious drawbacks to applying it to cloud animation. 1) 
cld remains 1 forever after cld has become 1 (see Eq. 2). 
2) The state transition converges and stops after sufficient 
simulation. The complicated movement of clouds can not, 
therefore, be simulated. In the following, we propose 
methods for solving the problems. 

5.1 CLOUD EXTINCTION 

     To acheve cloud extinction, a new variable ext is 
introduced. ext is just used to make clouds disappear and 
it has no physical meaning. Its transition rule is given as 
follows. 

  ext(i,j,k,t+1) = .NOT.ext(i,j,k,t).AND.cld(i,j,k,t) 
              .AND. fext( • )  
 (6) 

fext( • ) is a Boolean function similar to fact and its value 
is calculated by the state of ext around the grid. In this 
paper, the same shape is used for fext and fact. To make 
clouds disappear using the ext variable, the transition rule 
for cld is modified. That is, 

  cld(i,j,k,t+1) = .NOT.ext(i,j,k,t).AND. 
                (cld(i,j,k,t).OR.act(i,j,k,t)) (7) 

Using the above rule, cld becomes 0 after ext is 1. 
However, making cld 0 just after ext has become 1 results 
in very unnatural animation since the formation and 
extinction of clouds are repeated frequently in a short 
period. To avoid this, the extinction time extT  is 
introduced. That is, cld becomes 0 after extT  steps when 
ext becomes 1. This achieves the natural shape transition 
of clouds.  

5.2 CONTROL OF CLOUD MOTION  

     hum, act, and ext are supplied to simulate 
complicated cloud motion. That is, at every frame, the 
variables are checked to see whether their status is 0. The 
variables whose status are 0 are changed to 1 by random 
numbers that obey a specified probability function. Thus, 
clouds are gradually generated again in the regions where 
they have disappeared. Afterward, they may disappear 
due to the effect of the ext variable. These are repeated 
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again and again resulting in the complicated motion of 
clouds. Animator can control the motion by specifying 
the different probabilities at each grid point at different 
times. For example, making the probability high for hum 
results in a large amount of clouds. Since it is impractical 
to specify probability at each grid separately, the user 
specifies probabilities at several representative points and 
then the system calculates probabilities at each grid by 
interpolating them. 

6. CALCULATION OF CONTINUOUS 
DENSITY DISTRIBUTION 

     The method for calculating the continuous density 
distribution is described in this section. The proposed 
method uses metaballs [16] to obtain continuous 
distribution. Fig. 2(a) shows the idea of metaballs. In the 
figure, the vertical axis indicates the density and the 
horizontal axis indicates the distance from the center of a 
metaball. As shown in Fig. 2(a), metaballs are spheres in 
which a field function is defined. A metaball has two 
parameters, that is, density at the center and effective 
radius. Fig. 2(b) shows the idea of calculating continuous 
distribution using metaballs. In the figure, for simplicity, 
the density distribution is represented in one dimension. 
As shown in Fig. 2(b), metaballs are placed at each grid 
point and the continuous distribution is represented as a 
weighted sum of the field functions. Continuous 
distribution can be obtained by adjusting densities at their 
centers and their effective radii, based on the binary 
distribution. In the proposed method, the effective radii R 
is specified by the user. The density q  at the center of 
each metaball is determined as follows. 

     The binary distribution is considered to be the one 
obtained by halftoning the continuous distribution. This 
implies that a density at a point is approximately 
calculated by averaging the binary distribution around it. 
That is, the density kjiq ,,  of the metaball placed at a 

grid (i,j,k) is calculated by the following equation. 

  ∑
Ω∈
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where cld  is the binary distribution and nml ,,x  is the 
coordinate of the grid ),,( nml . )( ,, nmlxΩ  indicates a 
set of grids satisfying Rnmlkji <− || ,,,, xx  and cn  is the 

number of such grids. R  is the effective radius specified 
by the user.  Thus, continuous distribution is given by 
the following equation. 

∑
Ω∈
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N

kji
kjikji fq
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x

xxxρ   (9) 

where N  is the number of metaballs that include the 
point x  inside R  and f  is the field function (see 
Appendix).  

7. EXAMPLES 

     We created a simple animation to investigate the 
usefulness of the proposed method. 100 steps are 
calculated. Figs. 3(a) through (f) are images at the steps 
10, 20, 30, 40, 50, and 60, respectively. The viewpoint is 
above the clouds. In this example, 3D grids of 80x80x10 
are used for the simulation and continuous distribution is 
generated by using the proposed method. To simulate 
clouds advected by wind, the rule expressed by Eq. (5) is 
used for fact( • ). To calculate the color of clouds, only the 
single scattering of light is taken into account. The 
computation time for the simulation takes 19 seconds, 
that is, 0.19 seconds per one step. The computer is SGI 
Indigo2 MAXIMUM IMPACT(R10000 195 MHz). This 
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(B) CONTINUOUS DISTRIBUTION
      REPRESENTED BY METABALLS.

FIGURE 2: CALCULATION OF CONTINUOUS
                  DISTRIBUTION USING METABALLS.
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example demonstrates that the proposed method can 
generate realistic movement of clouds and the simulation 
can be done very quickly. 

     Next, we applied the proposed method to animation 
of natural scenery. Figs. 4 shows examples from the 
animation. In this example, the viewpoint is also changed. 
Fig. 5 shows another examples from the same animation. 
In this example, the sun position is changed from daytime 
to evening. The color of the sky is calculated by using the 
method proposed by Dobashi et al [17]. As shown in 
these images, realistic animation can be created by using 
the proposed method. Additionally, these examples show 
that the color of clouds depends greatly on the viewpoint 
and the sun position. In particular, the color turns red in 
the evening and this results in a fascinating animation 
when combined with their movement. 

8. CONCLUSION 

     This paper has proposed a method for simulating 
the dynamic movement of clouds using CA and 
demonstrated its usefulness by realistic animations. The 
proposed method has the following features. 

(1)  The simulation requires a small amount of 
computation since the dynamics of clouds is 
expressed by a simple Boolean operation. 

(2)  The movement of clouds can be controlled by 
specifying the probability distributions for hum, 
act, ext. 

(3)  The continuous density distribution is obtained by 
using metaballs. This makes it possible to create a 
realistic animation. 
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APPENDIX 

The field function proposed by Wyvill et al. is given by 
the following equation [16]. 
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where Rra /= , r is the distance from the center of a 
metaball to a calculation point, and R the effective radius 
of the metaball (see Fig 2(a)).  
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