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Abstract

When creating a cel animation, the animators often use
3D character models to add some effects on the character
or to generate intermediate images between the key frames.
However, it is a troublesome and time-consuming task to
create a 3D model. In this paper, we present an easy-to-use
approach for creating a set of consistent 3D character mod-
els from the user-specified strokes on a 2D image sequence.
The created consistent 3D models can be used in cel ani-
mation editing systems for adding shadowing effects, tex-
tures, etc. Moreover, since the vertices of the consistent 3D
models have one-to-one correspondence among the frames,
by using 3D morphing techniques, this approach can also
be used to generate intermediate images between the key
frames.

1. Introduction

The techniques of computer graphics are widely used for
supporting the creation process of cel animations. To cre-
ate a cel animation, the animator often uses 3D models to
add effects. For example, toon rendering makes it possi-
ble to smoothly embed 3D models into a 2D cel animation.
With these kinds of techniques, it is also possible to utilize
the respective advantages of 3D models and hand-drawn
2D sketches to provide a cel animation, although creating
a 3D model is a time-consuming task. For some rigid ob-
jects with less deformation such as cars or machines, since
these kinds of 3D models can be used in many scenes and
only need to be created just once, to create such 3D models
is useful for supporting the creation process of cel anima-
tions. However, for the human-like characters in a cel ani-
mation, since their shapes are often drawn with considerable
distortions due to the characters’ motions, changing view-
points, or animators’ exaggerations, it is difficult to create
their 3D models and only one model can not represent them
in all frames. Although it might be possible to make sev-
eral 3D character models whose shapes change with such
distortions, deforming the models manually for each frame

is a very time-consuming task. Hence, a rough 3D model is
often used for adding shading effects, such as shadows, on
only a few frames of a cel animation.

To create such a rough model for adding shading effects,
it is easy and effective to use a sketching system with which
the user can draw just the silhouette and some features of
the character, such like the systems provided by Igarashi et
al. [4] and Karpenko et al. [5]. Although using these small
systems can create a 3D model quickly and easily, since
these approaches only take the silhouette of each individual
animation frame into account, it is difficult to apply these
methods to add some effects on a cel animation, such as
texture mapping, if the coherence cannot be ignored. More-
over, it is also a tedious and time-consuming work to adjust
the 3D model created using these sketch systems, since the
character in a cel animation is usually hand-drawn and has
many distortions for aesthetic effect due to the characters’
motion, changing viewpoints, or animators’ exaggerations.

In this paper, we propose a method for creating a set
of consistent 3D character models from an image sequence
captured from a cel animation. The projected silhouette of
each created 3D character model coincides with the silhou-
ette of the character shown on the corresponding original
frame of the input cel animation. Moreover, all of the user-
specified features on the input image are embedded in the
corresponding produced model and the projection of the
features on the model coincides with the features shown
on the original frame. Therefore, the created consistent 3D
character models can be used for adding shading effects,
texture mappings, etc. Furthermore, these models can also
be used for generating the intermediate images in-between
two original key frames.

To create such a set of consistent 3D character models,
the correspondence among all of the frames should be estab-
lished first through several user-specified ”feature strokes”.
Then, by embedding the feature strokes into 3D space, the
consistent 3D character models can be created. Moreover,
creating a cel animation using vector-based drawings in-
stead of using bitmap images is recently becoming more
popular. Since our method can also be used by just defin-
ing the correspondence of the vectors among the frames, it



is possible to use our method smoothly to assist in the cre-
ation process of cel animations.

2. Related work

Rademacher [8] presented a typical method to create an
animation using a 3D character model which is generated
by a professional animator. In this method, the animator-
generated 3D character model is deformed to match some
reference images, and then the deformed models are inter-
polated to create an animation with distortion tolerance. Al-
though the animator can use this method to create an anima-
tion by carefully editing the 3D character model, deform-
ing the model manually is a tedious task due to the number
of the key frames. Although Corrêa et al. [3] presented a
method to deform a 3D model to fit an image with some
user efforts, the 3D model needs to be created by an anima-
tor before using their method.

Bregler et al. [2] proposed a method that allows a 3D
character model to act like an existing character in a cel
animation by tracking its actions. This method also needs
a well-generated 3D character model created by a profes-
sional animator. Moreover, to make this 3D character model
act like the captured motion of the character in the anima-
tion, it is necessary to manually edit the 3D model.

In order to create a 3D model, Igarashi et al. [4] and
Karpenko et al. [5] proposed easy-to-use sketching systems
with which the user draws only the silhouette. The systems
can then create a 3D model which preserves the silhouette
under some conditions. Petrović et al. [6] utilized these
methods to create rough 3D models from the 2D frames of
a cel animation and used the generated models to add shad-
ows to the original animation. Since their approach gener-
ates a rough and individual 3D model for each frame with-
out correspondence among them, the generated 3D models
cannot be used for other applications which need to keep
the coherence.

To create a 3D model from several 2D animation frames,
many computer vision techniques have been presented.
However, most of them assume that the 3D model is rigid,
so these methods are not applicable to non-rigid 3D mod-
els. Several methods, such as the one presented by Bregler
et al. [1], were proposed for generating a 3D model and its
motion, but they are also not applicable to a character model
in a cel animation which has many distortions.

In this paper, we present a method to create a set of con-
sistent 3D character models from an input 2D cel animation.
Our method is different from the method used in [6], where
the authors only create an individual 3D model for each
frame. Since we can create a set of consistent 3D charac-
ter models which preserve the user-defined correspondence
among the frames, it is possible to use the set of mod-
els to add shading effects, texture mapping, or to generate

intermediate character models in between the original key
frames.

3. System Overview and Definition

In this section, the system overview is first described
briefly. To start, the user first loads a sequence of images
representing a cel animation of a character. He or she then
specifies the silhouettes and some curves to denote the fea-
tures (feature strokes) of the character among the all frames
of the input cel animation. The correspondence among
all of the frames is also established at the same time. On
this occasion, if the shape of the character is complex and
consists of several components, this specification process
should be done for each component. Then, each feature
stroke is embedded into 3D space to be a 3D feature stroke.
Finally, we create consistent 3D models from the silhou-
ettes shown on the 2D images for all of the frames. The 3D
feature strokes are embedded into the created 3D models
to deform them. Since the created 3D models have vertex-
wise correspondence, they can be used for frame-consistent
texture mapping or for making 3D animation through mor-
phing techniques.

To clarify the descriptions of our method, we begin by
establishing some terminologies. The ”silhouette” is de-
fined as the boundary of a character’s component which is
our target object and is formed as a closed curve on the 2D
image space. The ”feature points” are the points used to
specify the correspondence among the frames. The ”feature
stroke” is defined as a non-closed curve which links the fea-
ture points and its length is larger than 0. We describe the
feature points and feature strokes on the image space as the
2D feature points and 2D feature strokes. Moreover, the
feature points and feature strokes in the 3D space are iden-
tified as the 3D feature points and 3D feature strokes. The
coordinates of the silhouette and feature strokes are defined
by subtracting the mean of all of the feature points, and the
origin of the local coordinate is normalized to the center of
the character. Figure 1 shows an example of the silhouette,
2D feature points, and 2D feature strokes. In this paper, we
assume the feature strokes are not crossed to each other on
the image plane (x − y space). The details of each process
will be described in the following sections.

4. Feature Stroke

4.1. Feature Stroke Input

Assume the input cel animation has m frames and the sil-
houette, 2D feature points, and 2D feature strokes are spec-
ified by the user on frames j = 1, 2, · · · ,m. Furthermore,
the correspondence among the frames is also specified by



(a) (b)

Figure 1. An example of silhouette, 2D feature
points, and feature strokes. (a) An input im-
age. (b) Its silhouette, feature strokes, and
feature points, which are marked by a dotted
line, solid lines, and the endpoints of solid
lines, respectively. c©Disney

the user as index i = 1, 2, · · · , n at the same time, where
n is the maximum index number. The feature points do
not need to be specified on all of the frames. The user can
only specify the feature points that are visible on some cer-
tain frames. That means if a feature only appears on some
frames, it can also be specified as a feature point. Similarly,
the user can also specify the feature strokes that are only
visible on some certain frames.

4.2. Frame Registration

The character which will be constructed as a 3D model
has various motions in the input cel animation. We as-
sume that the orthogonal projection is used for each frame.
According to the user-specified 2D feature points on each
frame, we approximate the relative locations of the input
frames in the 3D space. That means we wish to have a ro-
tation matrix Rj of the character and a scaling parameter sj

of the image for frame j that can approximate the location
relative to the first frame.

We first use Tomasi and Kanade’s method [9] to roughly
approximate the 3D positions of the feature points, which
have been specified on each frame by applying some scaling
and rotation parameters. By using their method, although
some of the feature points do not appear on all of the frames,
the approximation process also works well. However, since
their method works only for the rigid objects, if the object is
a character in a cel animation which has dynamic motions
and deformations, the approximating result may not be the
proper position, or even far from it. To properly generate
the 3D feature stroke (Section 4.3), we let the user be able
to designate the scaling parameters sj and rotation matrix
Rj directly and clearly for each frame. To reduce the work
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x
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Figure 2. The diagram of the estimating func-
tion. The value of the estimating function is
decided by using the distance between the 2D
feature point fij and the projected 2D point qij

of its corresponding 3D feature point pi by ap-
plying Rj and sj . c©Disney

required from the user, we modify Tomasi and Kanade’s
method [9] as the follows.

Assume the input cel animation has m frames and the
user specifies n 2D feature points on each frame of the an-
imation. We first use Tomasi and Kanade’s method [9] to
obtain the initial positions pi of n 3D feature points, where
i = 1, 2, · · · , n. Then, we maximize the estimating func-
tion

∑
i,j Fij(qij) for frame j = 1, 2 · · · ,m, where qij lies

on the image plane and is the projected 2D point of pi by
using Rj and sj . The rotation matrix Rj(αj , βj , γj), which
is represented by Euler angles, and the scaling parameter
sj are the variables of the estimating function. Fij(x) is a
density function and is defined as follows.

Fij(x) =
{

(‖x − fij‖ − r)2, if ‖x − fij‖ ≤ rj

0, otherwise
, (1)

where fij is the i-th 2D feature point on the frame j and rj is
a user-specified threshold that can be the same value for all
of the frames. The estimating function means that the closer
the projection of the 3D feature point and its corresponding
2D feature point, the larger the value of the estimating func-
tion. Moreover, if necessary, the user can arbitrarily fix αj ,
βj , or γj to increase the precision of the frame registration.
Through this method, by setting a proper rj , even if some
of the feature points are moved rapidly, we can still obtain
a relative closer frame registration.

4.3. 3D Feature Stroke Generation

From the scaling parameter sj and rotation matrix Rj

obtained in the previous section, we can embed the 2D fea-
ture strokes into 3D space to generate 3D feature strokes for
each frame. Since the 3D feature stroke generation process
can be operated independently for the feature strokes with



different index numbers, in the following description of this
algorithm, we will focus on only one set of corresponding
2D feature strokes, with a specific index, that appears on all
of the frames.

First, the 2D feature stroke which has the maximum
length on all of the frames is selected as the ”base feature
stroke”. Then, this base feature stoke is approximated as a
polyline. The number of vertices of the polyline depends on
a user-specified base segment length. The other 2D feature
strokes on other frames are segmented as polylines by the
same number of vertices.

If we define the 2D coordinates of the vertex to be x− y
values when embedding to the 3D space, the only problem
in this process is defining, in the camera coordinates, the
z value of each vertex which forms the polylines on each
frame, and this problem is converted to minimize an esti-
mating function. The initial z value can be set by interpo-
lating the z values of the feature points obtained by Tomasi
and Kanade’s method [9] described in the pervious section.
The estimating function G for a set of 3D feature strokes
S = {Sj |1 ≤ j ≤ m}, where Sj = (vj

1, v
j
2, . . . , v

j
l+1),

with number of segments l on frame j is defined as the fol-
lowing formulas:

G(S) =
∑

1≤j≤m

(V (Sj) + εK(Sj)), (2)

V (Sj) = ‖L(Sj) − 1
m

∑
1≤j′≤m

L(Sj′)‖2, (3)

L(Sj) =
∑

1≤k≤l

‖s−1
j R−1

j (vj
k+1 − vj

k)‖, (4)

K(Sj) =
∑

1≤k≤l+1

‖M(vj
k) − 1

m

∑
1≤j′≤m

M(vj′
k )‖2,(5)

M(vj
k) = s−1

j R−1
j vj

k, (6)

where K(Sj) is used to prevent the 3D feature strokes from
occurring on the same plane, and ε is a small positive coef-
ficient. That means if we assume the length in the 3D space
of the corresponding feature stroke among the frames does
not change, this estimating function will minimize the sum
of the differences between the average length and the length
of each feature stroke on each frame. Although there is
no guarantee that this algorithm converges to an optimized
result as many other minimization problems of non-linear
functions, since the value of this estimating function is usu-
ally positive, it still can converge to a minimum value.

Furthermore, if part of one 2D feature stroke can not be
seen, we first segment the visible part of it by the base seg-
ment length, and the invisible part is then estimated by in-
terpolation. Finally, the whole 2D feature stroke, including
both of the original visible and estimated invisible parts, is
segmented as a polyline by the same number of vertices as
other 2D feature strokes. Hence, the same algorithm can

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. The process of generating 3D fea-
ture strokes. (a)∼(c) 2D feature strokes.
(d)∼(f) The 3D feature strokes generated from
(a)∼(c). (g)∼(i) The same 3D features strokes
as (d)∼(f) but viewed from different viewpoint.
c©Disney

be used to generate 3D feature strokes of such 2D feature
strokes. Figure 3 shows the examples of 3D feature strokes.
Although the details of the shapes among the frames are dif-
ferent, through the item of K(Sj), the common shape can
still be generated.

5. Consistent 3D Models Creation

In this section, the 3D model creation method for each
frame is described. Although the main idea of the inflation
method is similar to the algorithm proposed by Igarashi et
al. [4], instead of creating a 3D model by just inflating the
vertices of triangulated silhouette along the ±z axis which
is perpendicular to the image plane (x−y space), we use the
z value obtained from using the 3D feature strokes which is
generated in the previous section. In the rest of this section,
we use a simple example to describe the algorithm. In this
simple example, all of the feature points and feature strokes
are visible on all of the frames.

To create consistent 3D models which take into account
the correspondence among the frames, we first define a set
of triangles as a ”common domain” [7] among the frames
(Figure 4 (c)). This common domain can be obtained by
constraint Delaunay triangulation algorithm which takes the
connectivity of 2D feature strokes among the feature points



as the constraint. At the same time, we define the patch
as the paths which connect the feature strokes and have the
same connectivity as the common domain (Figure 4 (d)). If
some paths of the patch intersect each other, some new ver-
tices will be inserted to the paths to re-adjust the route to
make the paths non-intersecting. We then parameterize the
patch to the common domain, and this parameterization is
obtained by performing a parameterization method to each
corresponding triangle. Using the obtained parameteriza-
tion, a recursive 4-to-1 subdivision is performed to each tri-
angle in the common domain to embed triangles inside the
silhouette (Figure 4 (e)).

Finally, by moving the position of each vertex along the
±z axis, the 3D model can be created (Figure 4 (f)). In
Igarashi et al.’s method [4], they use the distance from the
silhouette as the z value of an inside vertex. In our method,
we set the z value by using the coordinates of 3D feature
points and 3D feature strokes. That means for the vertices
on the corresponding feature strokes, the z values are set as
those of the vertices on the 3D feature strokes. For the other
vertices, we use the z values of the vertices on the nearest
3D feature strokes and Igarashi et al.’s method [4] to decide
their z values, i.e., the z value is decided as a weighted sum
of the z value of the vertex on the nearest 3D feature stroke
and the distance between the target vertex and the nearest
3D feature stroke.

If not all of the feature points and feature strokes are visi-
ble on all of the frames, the visible feature points and feature
strokes are set as the front domain and the invisible feature
points and feature strokes are set as the back domain. Then,
the two domains are independently arranged in the 2D do-
main and the 3D model is created by inflating them inde-
pendently along the +z and −z axes. The connectivity of
the domain is decided by constraint Delaunay triangulation
algorithm which sequentially adds the constraints from the
feature strokes on the first frame.

6. Results

We use a cel animation with 15 frames as our exam-
ple. Figure 4 shows the 3D model creation process of one
frame. It takes 2∼4 minutes to draw the silhouette and fea-
ture strokes on each frame by the user. We implement the
algorithm of 3D feature stroke generation with MATLAB.
Using a desktop PC with an Intel Pentium 4 1.7GHz CPU, it
takes about 2 minutes for 3D feature stroke generation and
1 minute for consistent 3D models creation which is imple-
mented with C++.

The created consistent 3D models are used for the fol-
lowing applications. Figure 5 shows the example of gener-
ating an in-between model and applying texture mapping to
the created consistent 3D models. Since the correspondence
among the models of each frame is defined clearly, it is easy

(a) (b)

(c) (d)

(e) (f)

Figure 4. Creating a 3D model for each frame.
(a) An input frame. (b) The silhouette, fea-
ture points, and feature strokes specified on
(a). (c) The base domain defined by the sil-
houette and feature strokes. (d) The patch
obtained from the parameterization of (c). (e)
The triangle mesh generated from subdivid-
ing the base common domain once. (f) The
3D model created from inflation after subdi-
viding the base common domain four times.
The thick solid lines shown in (b)∼(f) are the
corresponding feature strokes. c©Disney



(a) (b)

(c) (d) (e)

Figure 5. 3D morphing between two texture
mapped models. (a), (b) Part of input frames.
(c), (e) The created 3D models with texture
mapping corresponded with (a) and (b). (d)
The 3D model obtained from interpolating (c)
and (e). The texture coordinates used in (d)
and (e) are the same as (c). c©Disney

(a) (b)

Figure 6. Adding shadows to the input ani-
mation. (a) An input frame. (b) The result of
adding shadows to (a). c©Disney

to apply texture mapping on them.
Figure 6 uses two 3D models created by our method to

add shadows to the original image. Figure 6 (b) shows the
image obtained by performing a product operation to the
original image and the shadow image which is calculated
by setting the ground in the 3D space. The lighting source
is set to be parallel from the right side of the image to the
left side. Hence, the shadow of the right character can be
mapped to the left character. Therefore, we can generate
the results as those have been shown in [6]. Furthermore,
by drawing more feature strokes, we can even generate the
animation with complex shadows due to the bump of the
character model.

7. Conclusions and Future Work

In this paper, we proposed a consistent 3D model cre-
ation method from a cel animation with user-specified cor-

responding silhouette and feature strokes among the frames.
The 3D feature strokes are generated by considering the
length and position of the corresponding feature strokes
among the frames. Hence, the created consistent 3D models
can used to interpolate the key frames. Through the created
3D models, we can achieve the goal of supporting cel ani-
mation, such as Figure 5 and Figure 6.

Regarding future work, we hope to extend the range of
3D model creation and automatically extract and trace the
features. The length of the feature strokes is also needed to
be considered when interpolating the models.

8. Acknowledgment

The input cel animation used in this paper is downloaded
from the web site1 of Bregler et al.’s paper [2]. We would
like to thank them and Disney which provides the cel ani-
mation for their paper.

References

[1] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-
rigid 3d shape from image streams. In Proceedings of IEEE
Computer Vision and Pattern Recognition 2000, pages 2690–
2696, 2000.

[2] C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turning
to the masters: Motion capturing cartoons. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2002), 21(3):399–
407, 2002.
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