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Abstract—Interactive rendering under complex real world
illumination is essential for many applications such as ma-
terial design, lighting design, and virtual realities. For such
applications, interactive manipulations of viewpoints, lighting,
BRDFs, and positions of objects are beneficial to designers and
users. This paper proposes a system that acquires complex, all-
frequency lighting environments and renders dynamic scenes
under captured illumination, for lighting and material des ign
applications in cyber worlds. To capture real world lighting
environments easily, our method uses a camera equipped with
a cellular phone. To handle dynamic scenes of rigid objects
and dynamic BRDFs, our method decomposes the visibility
function at each vertex of each object into the occlusion dueto
the object itself and occlusions due to other objects, whichare
represented by a nonlinear piecewise constant approximation,
called cuts. Our method proposes a compact cut representation
and efficient algorithm for cut operations. By using our system,
interactive manipulation of positions of objects and realtime
rendering with dynamic viewpoints, lighting, and BRDFs can
be achieved.

Keywords-image-based lighting, interactive rendering, mate-
rial design

I. I NTRODUCTION

Capturing complex real world lighting environments and
rendering objects under the captured lighting environments
are beneficial to many applications in cyber worlds such as
lighting design, interior design, and web shopping. For ex-
ample, rendered images of goods (e.g. furniture and clothes)
under the illumination where the goods are actually used are
beneficial to customers in web shoppings.

In recent years, image-based lighting techniques, which
use the captured image as an environment map for the
lighting, have been widely studied. Although image-based
lighting techniques can render realistic images, real-time
rendering using image-based lighting is quite difficult dueto
the expensive computational cost of the integration over the
hemisphere of lighting directions at each calculation point.
Sloan et al. proposed a Precomputed Radiance Transfer
(PRT) method that precomputes the transfer function at each
vertex and achieved real-time rendering of static scenes
under environment lighting [1]. Although several methods
that extend the PRT method have been proposed ([2], [3],

[4]), interactive rendering of dynamic scenes of rigid ob-
jects with dynamic BRDFs remains a challenging problem.
Several applications, such as interior design and lighting
design, require the interactive manipulations of viewpoints,
lighting, the positions of objects, and BRDFs. Moreover,
it is quite difficult to capture lighting environments and
create environment maps since several special devices such
as omnidirectional cameras and spherical mirror balls are
required.

This paper proposes a system that captures the lighting
environments and renders dynamic scenes under captured
lighting environments. Our system estimates the lighting
environments by taking two photographs with a camera
equipped with a cellular phone. Then our system renders
rigid objects using the estimated illumination allowing users
to change the viewpoint, lighting, positions of rigid objects,
and BRDFs. Previous PRT methods have several limitations,
such as the fixed viewpoint and lighting [9], static scenes [6]
and the editable BRDFs are limited and the precomputed
data size is quite large [10]. In contrast, the proposed method
can edit arbitrary BRDFs and the data size required for
the proposed method is compact since no precomputed
BRDF data is necessary. To deal with dynamic scenes,
our method precomputes the shadowing effects of a rigid
object at sample points around the object. In the rendering
process, the visibility function at each vertex is calculated by
combining the precomputed shadow effects of other objects
and self-shadow due to the object itself. The shadowing
effects recorded at sample points and the self-shadowing
effect at each vertex are represented by a combination of
piecewise constant functions called cuts [5].

The contributions of the proposed method are as follows:

• complex, all-frequency lighting environments can be
acquired easily by using a cellular phone

• interactive rendering with dynamic viewpoints, lighting,
positions of objects, and BRDFs

• a compact representation and efficient operation algo-
rithm for cuts
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Figure 1. Overview of our system.

II. PREVIOUS WORK

PRT methods calculate the transfer function at each vertex
and represent the transfer function with a linear combination
of spherical harmonics functions [1] and wavelets [2] in the
preprocess. Although these methods can achieve real-time
rendering using environment lighting, scenes and BRDFs
are fixed to calculate the transfer functions in the preprocess.
Zhou et al. [3] and Sun et al. [4] proposed the PRT-based
methods to handle dynamic scenes, but are limited to fixed
BRDFs.

In recent years, real-time rendering methods using
shadow-maps for environment lighting have been pro-
posed [7], [8] These methods, however, approximate the
environment lighting with a small number of area light
sources, and evaluate the BRDF with a small number of
sampling directions, resulting in inaccurate calculations of
radiances.

Several methods have been proposed to edit BRDFs.
Lawrence et al. proposed an inverse shade tree method that
decomposes BRDFs into editable 1D functions for BRDF
editing [11]. This method, however, is limited to a point light
source. Colbert et al. [12] proposed a BRDF editing method
called BRDF shop, which can edit only Ward BRDFs. Ben-
Artzi et al. proposed a real-time BRDF editing method
for complex, all-frequency lighting for static viewpoint and
lighting [9]. Sun et al. developed an interactive relighting
method for dynamic BRDFs with global illumination [10].
This method, however, assumes that the scene is static and
the precomputed BRDF data is quite large. Akerlund et al.
precomputed visibility cuts that enable BRDF editing in
the rendering process [5]. Cheslack-Postava et al. extended
visibility cuts to handle per-pixel shading [6]. Recently,
Wang et al. proposed a real-time rendering method for
dynamic, spatially-varying BRDFs under all-frequency light-
ing environments [13]. Although these methods can change
BRDFs in the rendering process, these methods assume that
the scenes are static.

(a) (b) (c)

Figure 2. (a) images captured by using the fish-eye lens. (b) reflections
of the black frame of the fish-eye lens are shown in red rectangles. (c)
reflections of the black frame of the fish-eye lens are almost removed.

III. SYSTEM OVERVIEW

The overview of our system is shown in Fig. 1. Our
system consists of two subsystems:illumination estimation
subsystem and rendering subsystem. Firstly, to capture the
complex real world lighting, the user takes photographs
of the environment that the user wants to create in the
cyber world. Our system assumes that the device to take
the photograph is a camera with a cellular phone since
cellular phones are widely used and the performances of the
cameras of the cellular phones are advancing, though the
other devices such as the digital cameras also can be used.
Secondly, the illumination estimation subsystem estimates
the lighting environment by using the captured photographs.
The illumination estimation subsystem calculates the source
lighting of the environment and stores it in a cubemap. Then
the rendering subsystem renders a scene that the user wants
to design. The rendering subsystem allows the user to change
the viewpoint, lighting, BRDFs of the objects, the positions
of the objects interactively.

IV. I LLUMINATION ESTIMATION SUBSYSTEM

An input to the illumination estimation subsystem is an
information of the lighting environments of the scene that
the user wants to create in the cyber world. To capture the
whole view of the scene, our method uses a camera with a
fish-eye lens, which is easily obtained. By using the fish-eye
lens, the user takes only two photographs of the scene (front
side and back side of the scene) as shown in Fig. 2(a).

Next, the illumination estimation subsystem creates High
Dynamic Range (HDR) images from the two photographs,
which are stored in Low Dynamic Rage (LDR) images, to
capture complex, all-frequency lighting environments. To
create HDR images from LDR images, different exposure
images are required [16]. To do this, our method utilizes
the auto exposure bracketing option of the camera of the
cellular phone, which can automatically take three or more
shots with a different exposure.

By using the HDR images, the source lighting incident
onto the scene is estimated. However, as shown in Fig. 2(b),
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Figure 3. Cut representation of clustered sample directions.

the frame of the fish-eye lens is captured in the images,
which may lead to artifacts in the rendered images.

To address this problem. our method eliminates the re-
flections of the frame of the fish-eye lens by using the
seamless cloning method in [15]. A rectangle area that does
not include the reflections of the frame is selected and is
composed into the images seamlessly as shown in Fig. 2(c).
The edited images are stored in a cubemap and used in the
rendering subsystem.

V. RENDERING SUBSYSTEM

The rendering subsystem outputs the rendered images of
the scene using the estimated illumination. Similar to the
previous methods [3], [4], our method assumes the dynamic
scenes of rigid objects and direct illumination. Fast global
illumination calculation of dynamic scenes with dynamic
BRDFs is a challenging problem and we leave it to future
work. The outgoing radianceB(x, ωo) at each vertexx in
viewing directionωo is calculated from:

B(x, ωo) =

∫
Ω

L(ω)V (x, ω)fr(ω, ωo) cos θdω, (1)

whereΩ is the directions on unit sphere,L(ω) is the source
lighting represented by an environment map,V (x, ω) is the
visibility function,fr(ω, ωo) is the BRDF,cos θ is calculated
by the inner product of the normal at vertexx and the
incident directionω and clamped to 0. The proposed method
samples the incident directions on the unit sphere into tens
of thousands directions to capture complex, all-frequency
lighting. Eq. (1) is calculated from:

B(x, ωo) =

S∑
j=1

L(ωj)V (x, ωj)fr(ωj , ωo) cos θ∆j , (2)

whereS is the number of sample directions,∆j is the solid
angle corresponding to the sample directionωj . Since it is
impractical to calculate Eq. (2) for many sample directions,
our method calculates Eq. (2) by clustering sample directions
as:

B(x, ωo) ≈

N∑
k=1

lkvkfr(ωk, ωo), (3)
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Figure 4. Self Visibility Cut (SVC) and Visibility Cut Field(VCF).

whereN is the number of clusters,lk is calculated fromlk =∫
Ωk

L(ω)dω, Ωk is the solid angle corresponds to cluster
Ck, ωk is the representative direction of clusterCk, vk is
calculated fromvk = 1

|Ωk|

∫
Ωk

V (x, ω) cos θdω.

The clustering method is based on the binary tree struc-
ture [5]. As shown in Fig. 3, each leaf node corresponds
to each sample direction and stores the value of visibility
function. The inner node that represents the cluster storesthe
average of values stored at two children nodes and the error
value due to the clustering. The values of the inner nodes
are calculated in a bottom-up manner. Then our method
selects the nodes whose error is smaller than the threshold by
traversing the binary tree from the root node. The visibility
functionV is represented by a set of clusters calledcuts. The
visibility function V is calculated from the product of the
self-visibility Vs due to the object itself and the occlusion
Vi due to other objecti as:

V (x, ω) = Vs(x, ω)
∏
i=1

Vi(x, ω). (4)

For rigid objects, the self-visibility can be precomputed
at each vertex, and the occlusion due to each object can
be recorded at sample points around the object in the
preprocess. In our method, the product of the self-visibility
Vs and the cosine term is represented withṼs(x, ω). Ṽs(x, ω)
is precomputed and clustered at each vertex. The cut of
Ṽs(x, ω) is referred to as Self Visibility Cut (SVC). The
occlusions recorded at sample points around each object are
also precomputed and represented with cuts. These cuts are
referred to as Visibility Cut Field (VCF) (see Fig. 4).

The outgoing radiance at each vertex is calculated by
using Eq. (2). The cluster valuevk is calculated by using
SVC and VCF. BRDFfr(ωk, ωo) is directly evaluated on
the fly. The outgoing radiance at each vertex is calculated
by summing the productlkvkfr(ωk, ωo) over the cut nodes.

A. Implementation details

1) Precomputation: The proposed method precomputes
SVC at each vertex of each object, and VCF of each object.



In the binary tree structure for clustering, each leaf node
corresponds to each sample direction on the unit sphere.
The sample directions are calculated by distributing points
uniformly on the unit sphere using a point repulsion algo-
rithm [14]. In the proposed method, the number of sample
directions is set to 32,768 (= 215), which gives good results.
First, SVC at each vertex of each object is calculated. At
each vertex, rays of sample directions are traced and the
values ofṼs(x, ωj) are stored at leaf nodes. The clustering
and selection of cut nodes are similar to [5].

Next, VCF for each object is calculated. The sample
points that record the occlusion due to the object are gen-
erated on the concentric spheres whose center is the center
of the object (see Fig. 4). The occlusions at each sample
point are calculated by tracing rays of sample directions.
The occlusionVi(xs, ω) due to objecti at sample pointxs

is a binary function. That is, if a ray fromxs in directionω

intersects objecti, Vi(xs, ω) returns 0, otherwiseVi(xs, ω)
returns 1. The occlusionVi(xs, ω) is sampled at each sample
direction ωj and stored at each leaf node. To render sharp
shadows, our method clusters the two child nodes only if
the values of two child nodes are the same. The clustered
nodes are stored as the cut nodes. VCF stores the cuts at all
sample points.

2) Cut representation: Since VCF stores all the cuts at
densely sampled points around each object, the size of the
VCF is quite large. To address this problem, the proposed
method reduces the data size of VCF by using a new
representation of cuts. For the VCF, each cut node stores the
binary value (0 or 1) of the cut node and the position of the
cut node. In the previous methods [5], [6], the position of the
cut node is represented by using an index (see Fig. 5). The
index of the node requires 2bytes for215 directions. Since
the binary value of the cut node can be represented by only
1bit, the data size of the index of the node is dominant in
the data size of the cut nodes.

The proposed method exploits the property that every
path from the root node to a leaf node contains exactly
one cut node. By utilizing this property and ordering the
cut nodes from the leftmost node in the tree, the position
of the cut node can be identified by using the height of
the node (the number of the edges from the leaf node).
The proposed method represents the position of the node
by using its height instead of the index (see Fig. 5). The
proposed method can represent the node position using only
4bits since the height of the node ranges from 0 to 15.

3) Operations of height-based cuts: In the rendering
process, the clustered valuevk of the visibility function at
each vertex is calculated by using SVC and VCF. We explain
the operations of multiple cuts such as the product and the
interpolation. The operation of cut nodes is performed only
when the cut nodes satisfy the relationship of descendent and
ascendant. Therefore, the operand cut nodes are traversed
to keep the relationship. The proposed method prepares
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(a) our method (b) previous methods [5], [6]

Figure 5. Cut representation. (a) cut nodes are representedby its height.
The number in the node represents its height. (b) cut nodes are represented
by index. The number in the node represents its index.

counters to determine whether the operand cut nodes satisfy
the relationship or not. Letnj be the operand node ofj-th
cut pointed by pointerpj , hj be the height of nodenj , cj

be the counter of cutj, andhmin be the minimum height
in all operand nodes. The operation processes ofm cuts
(1 ≤ j ≤ m) are as follows:

Step 1 Initialize the countercj of j-th cut as zero and set
pointerpj to point to the first cut node.

Step 2 Perform operations, such as product and interpo-
lation of nodesnj. Store the value at the node
whose height is the minimum heighthmin in
(h1, h2, · · · , hm).

Step 3 (a): If heighthj is equal tohmin, advance the
pointerpj and set countercj to zero.
(b): Otherwise (i.e.hj > hmin), add2hmin to the
countercj . If cj ≥ 2hj , advance pointer to the next
node and setcj to zero.

Step 4 Repeat from Step 2 to Step 3 until all pointers point
to the last cut node.

Fig. 6 shows the calculation process of the product of
the cut nodes. In Fig. 6, the number in the node represents
the value of the cluster and the pointers are represented by
arrows. As shown in Fig. 6(b), pointersp1 andp2 are set to
point to each leftmost node, andc1 andc2 are initialized to
zero (Step 1). The operation of pointed nodes is performed
(Step 2). The result is stored in the node whose height is
the minimum heighthmin of the operand cut nodes. In this
case the minimum heighthmin is h1. After the operation,
pointerp1 is advanced (Step 3(a)). For noden2, sinceh2 is
greater thanhmin, 2hmin is added to counterc2 (Step 3(b)).
By comparing counterc2 with 2h2 , nodesn1 and n2 are
tested whether to satisfy the relationship of descendant and
ascendant. In Fig. 6(c), nodes are considered to satisfy the
relationship sincec2 = 1 < 2h2 . Then the operation of nodes
is performed again (Step 2), and pointerp1 is advanced (Step
3(a)). For noden2, 2hmin is added to counterc2 (Step 3(b)).
At this time, counterc2 is equal to2h2 and nodesn1 andn2

do not satisfy the relationship of descendant and ascendant
as shown in Fig. 6(d). Then pointerp2 is advanced andc2 is
set to zero (Fig. 6(e)). By using our method, each cut node
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(e) pointerp2 is advanced andc2 is set to 0.

Figure 6. Product of two cuts.

always satisfies the relationship of descendent and ascendant.
4) Rendering: In the rendering process, the outgoing

radiance at each vertex is calculated from Eq. (3). The
cluster valuevk of the visibility function is obtained by
using SVC and VCFs. For the VCF of each object, eight
sample points neighbor to the vertex are calculated. The
cluster values of the occlusion function due to objecti are
interpolated by using the cuts stored at eight sample points.
The cluster values of the visibility functionV (x, ωj) are
calculated by multiplying the cluster values of the SVC
with the interpolated cluster values of the VCFs. The cluster
value of source lightinglk for clusterCk and the evaluated
BRDF fr(ωk, ωo) are multiplied withvk, and the product
lkvkfr(ωk, ωo) is summed over all cut nodes.

B. Acceleration

Since the computational cost of radiance calculations
using cuts is quite high, our method accelerates the radiance

calculation by using visibility culling. Firstly, our method
calculates only the radiances of visible vertices from the
viewpoint. To detect the visible vertices, our method assigns
ID to each triangle and renders the triangles by setting the
ID to its color. Then by reading the pixel values from the
framebuffer, IDs of the visible triangles are obtained. The
vertices of the visible triangles are considered as the visible
vertices. Secondly, for each vertex, our method culls the
objects that do not contribute to the radiance of each vertex.
Our method culls the objects whose bounding spheres are
under the local horizon plane of the vertex. Finally, since
the radiance calculation of each vertex can be parallelized,
our method calculates the radiances of vertices in parallel
by using multithread programming.

VI. RESULTS

Fig. 7 shows the rendering results of the furniture scene
with dynamic viewpoints, lighting, BRDFs and translating
objects. Fig. 7(a) shows the furniture scene whose materials
are all diffuse BRDFs. In Fig. 7(b), BRDFs of a chair, table,
and sofa are changed to Phong BRDFs. Fig. 7(c) shows
the rendering result of translating a chair and Fig. 7(d) is
rendered with different viewpoint and lighting. Figs. 7(e)
and (f) are rendered by using environment maps captured
by using a cellular phone CASIO EXLIM W63CA (the
resolution of the camera is 809Mpixels).

The rendering frame rate of translating objects is 7fps, and
that for dynamic viewpoint, lighting and BRDFs is 42fps
on a PC with Intel Core i7 Extreme 965 and an NVIDIA
GeForce GTX 295. The number of vertices in Fig. 7 is
27,000 and the precomputed data size of SVC and VCFs
is 270MB. Please note that the data size is smaller than [3],
[10]. To generate sample points for VCF, 32 concentric
spheres of the bounding sphere are distributed and6 × 322

sample points are distributed on each concentric sphere. That
is, 196,608 sample points are generated for each VCF. The
data size of SVC and VCF using the previous method [6]
is 687MB. The average cut sizes of SVCs and VCFs of this
example are 428 and 710, respectively. That is, the proposed
method can reduce the precomputed data about 61%.

Fig. 8 shows a comparison of rendered images with
different number of sample points of VCF. Fig. 8(a) is the
reference image of the static scene of a teapot and a floor.
Figs. 8(b) to (e) show the images with different number of
sample points of VCF of the teapot. The concentric spheres
for VCF are uniformly distributed between0.2r to 10r,
where r is the radius of the bounding box of the object.
Fig. 8(b) (64 concentric spheres and6×642 sample points on
each concentric sphere) is indistinguishable to the reference
image (Fig. 8(a)). However, the required data size is quite
large for this very simple scene. In Figs. 8(d) (16 concentric
spheres and6 × 162 sample points) and (e) (8 concentric
spheres and6×82 sample points), shadows due to the teapot
are blurred due to low sampling of VCF. In our examples,



we obtain plausible results with32 concentric spheres with
6 × 322 sample points of VCF as shown in Fig. 8(c).

VII. C ONCLUSION AND FUTURE WORK

We have developed a prototype system that captures light-
ing environments and renders scenes under captured illumi-
nation interactively. Our illumination estimation subsystem
can calculate all-frequency, complex lighting environments
by only taking photographs using a camera of a cellular
phone. Our rendering subsystem can render dynamic scenes
with dynamic viewpoint, lighting and BRDFs interactively.
The visibility functions are efficiently calculated by using
SVC and VCF. We have proposed a new cut representation
based on the node height, which can represent the cut data
compactly, and an efficient operation method of cuts. Our
system enables the users to change the positions of objects
at interactive rates and to change the viewpoint, lighting and
BRDFs in real-time.

The prototype system is a stand-alone system. In future
work, we would like to extend our method to a server-client
model. Moreover, in the illumination estimation subsystem,
the elimination of the reflections of the frame of the fish-eye
lens is performed by the user. We would like to develop an
automatic method that can eliminate the reflections to reduce
the user’s burden.
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Figure 7. Rendering results using our system.

(a)reference (b)64 × 6 × 642 (c) 32 × 6 × 322 (d) 16 × 6 × 162 (e) 8 × 6 × 82

(207MB) (31MB) (3MB) (0.3MB)

Figure 8. Comparison of the images with different number of sample points for VCF.


