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A Velocity Correcting Method for Volume Preserving
Viscoelastic Fluids

Tetsuya Takahashi · Issei Fujishiro · Tomoyuki Nishita

Abstract We propose a new particle-based method for
simulating viscoelastic fluids which preserve their vol-

umes. Our method achieves the volume preservation
by enforcing the incompressibility of fluid, while cor-
recting particle velocities to approximate the dynamics

of viscoelastic fluids without disturbing computations
for the incompressible flow. We offer three schemes for
correcting particle velocities. The first scheme employs

Shape Matching proposed by Müller et al. to derive ap-
propriate transformations of particle sets. The second
computes attraction forces on the basis of Hooke’s law

to restrict particle motions. The third utilizes Position-
Based Dynamics to restore the original relations of par-
ticle positions. The first scheme enables smooth trans-

fers of deformation waves, the second is intuitive and
simple, and the third is easy to tune parameters. We
demonstrate that our method can preserve fluid vol-

umes while generating plausible viscoelastic motions.

Keywords Fluid simulation · Viscoelasticity · Volume
preservation · Velocity correction

1 Introduction

Viscoelastic fluids are common in our everyday lives,

as we often see examples of these materials: egg white,
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gels, mucus, gelatin, and toothpaste. Due to the ubiq-
uity of viscoelastic materials, simulating their sticky

and bouncy behaviors has been required for feature
films and video games.

Preserving fluid volumes is one of the most impor-
tant aspects to simulate plausible fluid motions. For ex-
ample, a lump of viscoelastic fluid on a flat solid surface

when being compressed does not horizontally spread
unless the volume of the lump is sufficiently preserved.
In the computer graphics community, there are several

known simulation methods for viscoelastic fluids which
preserve fluid volumes using Eulerian grids [14] or La-
grangian meshes [2,42,41,9], yet we herein focus on the

Lagrangian particle-based approach due to its concep-
tual simplicity.

In the literature of particle-based methods, com-
binations of Smoothed Particle Hydrodynamics (SPH)

[25] and a geometrically-motivated method have been
proposed to simulate viscoelastic fluids efficiently and
robustly [10,37]. However, these previous combinations

spoil the fast convergence rate of state-of-the-art fluid
solvers, e.g., Predictive-Corrective Incompressible SPH
[32] (PCISPH) and Implicit Incompressible SPH [17]

(IISPH), which can preserve fluid volumes well by en-
forcing the incompressibility of fluid. Takamatsu and
Kanai [37] combined SPH with a variant of Shape Match-

ing [27] (SM), and interpolated two velocities derived
from both methods to fast and robustly simulate vis-
coelastic fluids. However, since the variant of SM does

not preserve the object volumes, the combined method
in [37] suffers from the loss of fluid volumes. A prediction-
relaxation scheme proposed by Clavet et al. [10] directly

corrects particle positions based on various factors such
as collision responses and spring-based forces, yet this
scheme changes sets of neighboring particles and in-

terparticle distances. Thus, their prediction-relaxation



2 Tetsuya Takahashi et al.

Fig. 1 A sphere of viscoelastic fluid compressed by a moving solid along a fixed path. Horizontally spreading motions are
achieved due to the small volume loss of the material less than 1.0% by making use of position-based velocity corrections.

scheme disturbs the computations for the incompress-

ible flow.

In this paper, we therefore propose a new particle-

based method for simulating viscoelastic fluids which
preserve their volumes. Our method utilizes velocity
corrections to separate formulations for viscoelastic ef-

fects from computations for incompressible fluids, and
our main contribution lies in separating the formula-
tions not to slow down the computations for fluid in-

compressibility. To show our idea is applicable to differ-
ent geometrically-motivated methods and to compare
the existing methods with ours under fair conditions,

we offer three schemes for correcting velocities of parti-
cles without estimating viscoelastic force fields for fast
and stable simulations. The first scheme adopts SM

[27] to derive suitable transformations of particle sets.
The second is based on Hooke’s law to compute attrac-
tion forces. The last utilizes the idea of Position-Based

Dynamics [26] (PBD) to compute velocity correction
vectors. We employ IISPH [17] as our underlying fluid
solver owing to the fast convergence of density fluctu-
ations for the incompressible flow, and combine IISPH

[17] with one of the three velocity correction schemes
to achieve volume preserving viscoelastic fluids. Fig. 1
illustrates horizontally spreading motions of a viscoelas-

tic ball compressed by a moving solid, which cannot be
fully captured with compressible viscoelastic fluids.

2 Related Work

Viscoelastic fluidsViscoelastic fluids have mainly been

simulated using a spring-based method or methods based
on SPH. Miller and Pearce [22] and Terzopoulos et al.
[39] proposed a spring-based model that computes re-

pulsion and attraction forces among particles to simu-
late viscoelastic materials. Their method was also adopt-
ed by Steele et al. [34] and Tamura et al. [38]. Clavet et

al. [10] combined this spring-based method with SPH

to simulate materials with elasticity, plasticity, and vis-

cosity, adopting a prediction-relaxation scheme, which
partly shares the features of PBD. Takamatsu and Kanai
[37] fast and robustly simulated viscoelastic materials

by combining SPH with a variant of SM. Müller et al.
[28] proposed an elastic term which uses Moving Least
Square (MLS) to simulate elastoplastic objects. Solen-

thaler et al. [33] adopted the formulation of this elastic
term and computed it using SPH instead of MLS to
allow for robustly simulating fluid with various proper-
ties under the condition of collinear or coplanar particle

distributions. The method of Solenthaler et al. [33] was
extended to handle rotational motions of elastic materi-
als [3]. Mao et al. [21] introduced an elastic force term,

called nonlinear corotational Maxwell model, into the
Navier-Stokes equations to simulate viscoelastic fluids.
This method was also adopted by Chang et al. [8]. Paiva

et al. [29] simulated viscoplastic objects using a gener-
alized Newtonian model.

Gerszewski et al. [13] proposed a new formulation
for simulating elastoplastic materials, which uses affine
transformations to compute the gradient of deforma-

tions. This formulation was solved by Zhou et al. [43]
in an implicit manner to efficiently and robustly per-
form simulations adopting larger time steps.

Takahashi and Fujishiro [35] simulated viscous fluids
with elasticity using PBD with a low computational

cost.

Volume preservation Volume preservation is nec-
essary to plausibly generate motions of objects, and

many methods for preserving volumes have been pro-
posed for deformable objects by computing deformation
energy [40,30] or imposing constraints upon computa-

tional elements [16,19,36,12].

For particle-based fluids, volume preservation meth-

ods have focused on minimizing density fluctuations
from the fluid rest density by enforcing the incompress-
ibility of fluid [18], because of frequent topology changes

unlike methods for deformable objects. After Müller et
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al. [25] presented the basic SPH method, which suffers

from unacceptable density fluctuations and volume loss
due to the dependence on an equation of state (EOS),
Becker and Teschner [4] proposed Weakly Compress-

ible SPH and alleviated the fluctuations by replacing
the EOS in [25] with a stiffer EOS called Tait equation
[24], necessitating excessively smaller time steps. In or-

der to adopt larger ones, predictive-correction schemes
were proposed, e.g., PCISPH [32] and local Poisson
SPH [15]. Recently, Bodin et al. [6] proposed a sys-

tem of velocity constraints to improve the accuracy of
PCISPH achieving uniform density fields over particles.
To further accelerate fluid simulations using PCISPH,

Macklin and Müller [20] adapted PBD for fluid simula-
tion to allow for the use of larger time steps than the
ones adopted in PCISPH. Similarly, Ihmsen et al. [17]

proposed IISPH, which computes particle pressure val-
ues in an implicit manner with minimal assumptions.
Furthermore, Cornelis et al. [11] combined IISPH with
Fluid-Implicit-Particle to further accelerate simulation

performances.

3 Our Algorithm

Our key idea to simulate volume preserving viscoelastic
fluids is to separately deal with the volume preservation
and viscoelasticity. While preserving the fluid volumes

by enforcing the incompressibility of fluid using IISPH
[17], we utilize velocity corrections for viscoelastic ef-
fects without negatively influencing the convergence of
density fluctuations in IISPH [17].

In Section 3.1, we first make a brief explanation

of IISPH [17] to elucidate the mechanism of the fluid
solver and its important features, and then Section 3.2
shows the procedure of our method. The three velocity

correction schemes are detailed in Section 4.

3.1 IISPH Method

IISPH aims to achieve deviations of the particle density

ρ less than a certain percentage, e.g. 1%, to the fluid
rest density ρ0 by iteratively correcting the pressure of
each particle in an implicit manner. For the derivation

of formulations and implementation details, please refer
to the original paper of IISPH [17].

First, we compute the particle density ρi =
∑

j mjWij

for particle i with its mass mi, neighboring particle j,

and finite support kernel Wij = W (xij , h), where xij =
xi − xj , xi is the position of particle i, and h denotes
a kernel radius. Then, intermediate density ρ̃i is com-

puted with intermediate velocity ṽi = vi + ∆tF̃i/mi,

where vi is the velocity of particle i and F̃i is non-

pressure force, using the continuity equation by

ρ̃i = ρi +∆t
∑
j

mjṽij∇Wij ,

where ∆t is a time step, and ṽij = ṽi − ṽj . The next

step is to find pressure values which result in appropri-
ate pressure forces to make all particles satisfy the rest
density ρ0, and we obtain the following equations:

ρ0 − ρ̃i = piaii + bij ,

aii =
∑
j

mj(dii − dji) · ∇Wij ,

bij =
∑
j

mj(
∑
j

dijpj − djjpj −
∑
k ̸=i

djkpk) · ∇Wij ,

dii = −∆t2
∑
j

mj

ρ2i
∇Wij ,

dij = −∆t2
mj

ρ2j
∇Wij .

Then, we compute pressure values using weighted Ja-
cobi method with an iteration index n and a relaxation

factor w:

pn+1
i = (1− w)pni + w

ρ0 − ρ̃i − bnij
aii

.

Note that the computations of the weighted Jacobi meth-
od include particle positions, and thus the positions

must be kept during the iterations after intermediate
velocity ṽ is determined. As explained in [32] and [17],
ignoring position changes of particles is the cause of

erroneous sets of neighboring particles and their inter-
particle distances, and leads to inaccurate estimation of
physical values, which can cause the fluid solver to fail

or slow down the convergence of the iterations.

After we obtain pressure pi, pressure force Fp
i is

computed by

Fp
i = −mi

∑
j

mj(
pi
ρ2i

+
pj
ρ2j

)∇Wij , (1)

and particle velocity vi and position xi are integrated

using the Euler-Cromer scheme.

Since we get pressure p from intermediate velocity ṽ,
IISPH is interpreted as a function that p = IISPH(ṽ),
and this corresponds to the pressure projection used in

the Eulerian fluid simulation [7].

3.2 Procedure of Our Method

We insert the velocity correction step (Section 4) be-
fore the iterations in IISPH, and the following is our
simulation algorithm.

1. Find neighboring particles;
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2. Correct particle velocity (see Section 4);

(a) Compute predicted velocity vadv;
(b) Get corrected velocity v∗ using one of the three

schemes;

(c) Obtain intermediate velocity ṽ using XSPH [23];
3. Compute pressure value p = IISPH(ṽ);
4. Compute pressure force Fp using Eq. (1);

5. Update velocity v = ṽ +∆tFp/m;
6. Update position x = x+∆tv.

4 Velocity Correction

We correct particle velocities to describe viscoelastic
effects without changing particle positions. In order to

obtain intermediate velocity ṽi for particle i as an input
for IISPH, we first compute predicted velocity vadv

i with
all forces Fadv

i except for viscoelastic and pressure ones

without directly computing ṽi as in IISPH:

vadv
i = vi +∆t

Fadv
i

mi
.

Then, we correct particle velocities with velocity cor-

rection vector ∆vi:

v∗
i = vadv

i +∆vi.

Lastly, we apply XSPH [23] to reduce particle oscilla-
tions with v∗

ij = v∗
i − v∗

j and a velocity mixing param-

eter ϵ (0 ≤ ϵ ≤ 1):

ṽi = v∗
i + ϵ

∑
j

mj

ρj
v∗
jiWij .

Note that XSPH [23] modifies only particle velocities
without affecting the convergence of the fluid solver,
and therefore XSPH [23] is suitable for the purpose of

our velocity correction.
In the followings, we explain the three schemes for

computing velocity correction vector ∆v.

4.1 Shape Matching Scheme

We formulate shape matching scheme as with the method
of [37] adapting Lattice Shape Matching [31], which was
extended from the original SM [27] to increase the de-

gree of freedom of object deformations.
We consider particle i with its reference position

x0
i , which has a set of Ssm

i particles for SM, and the

reference position s0i of the set is defined to be the cen-
ter of mass of the particles. In SM, particle i is pulled
toward its goal position gi to restore the original con-

figuration of the particles, and individual goal positions
are computed to match the original configuration of the
particles defined by x0

i with current particle distribu-

tions denoted as xi after the particles are transferred.

Specifically, we compute a rotational matrix Ri which

transforms the particles to their own reference positions
with si, the current center of mass of the particles. The
goal position gi is computed by

gi =
1

Ssm
i

Ssm
i∑
j

(
Rj(x

0
i − x0

j ) + sj
)

= Ri(x
0
i − s0i ) + si,

and then we obtain velocity correction vector ∆vsm
i

with a coefficient for the shape matching velocity cor-
rection ksmi (0 ≤ lsmi ≤ ksmi ≤ 1) and lsmi , the lower

limit of ksmi :

∆vsm
i = ksmi

gi − xi

∆t
,

If lsmi < ksmi , and αsm
i < (||gi−xi||)/h, where αsm

i (0 ≤
αsm
i ) is a yield criterion, which invalidates the influence

of small oscillations and deformations of materials, we

weaken the effect of ksmi to realize plastic and viscous
effects by

ksmi ← max(ksmi −∆tksmi dsmi , lsmi ),

where dsmi (0 ≤ dsmi ) is a parameter that controls the
weakening speed of ksmi .

In order to enable the merge of viscoelastic materi-

als, we change a set of particles for SM. Let csmij denote
the distance of two particles which are not associated
with each other as a particle for SM, and we update

the set if csmij /h < βsm
ij , where βsm

ij = (βsm
i + βsm

j )/2,
(0 < βsm

i ), is a threshold to update a set of particles
for SM. We also update the set for the split of the ma-

terials if γsm
i < ||gi − xi||/h, where γsm

i (0 < γsm
i ) is a

parameter which limits the extent of deformations.

4.2 Spring-based Scheme

In the spring-based scheme, we correct particle veloci-
ties with springs between two particles, and the springs

are created when an object is generated, Hereafter we
call particles connected with their springs as connected
particles.

Since IISPH that we use can resolve fluid compres-
sion, we address only fluid expansions which are caused
by separating particles from the other. In order to com-

pute velocity correction vector vspr
i only with connected

particles which are separating from the other, we define
a distance function with their positions and interparti-

cle distance rij as

D(xi,xj) = max(||xij || − rij , 0), (2)

where rij is initialized with the distance between the

two particles when their spring is created. Then, we
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compute velocity correction vector vspr
i based on Hooke’s

law with kspri (0 ≤ lspri ≤ kspri ), a coefficient for the
spring-based velocity correction and lspri , the lower limit
of kspri by

∆vspr
i = −∆t

mi

Sspr
i∑
j

kspri + ksprj

2
D(xi,xj)

xij

||xij ||
,

where Sspr
i denotes the number of connected particles

to particle i. Similar to the shape matching scheme, we
weaken the effect of kspri if lspri < kspri :

kspri ← max(kspri − ∆t

Sspr
i

Sspr
i∑
j

dsprij σij , l
spr
i ),

σij =

{
1 if αspr

ij <
D(xi,xj)

h ,

0 otherwise,

where dsprij = (dspri + dsprj )/2, (0 ≤ dspri ), governs the
weakening speed of kspri , and αspr

ij = (αspr
i + αspr

j )/2,

(0 ≤ αspr
i ), is a yield criterion.

In the spring-based scheme, we also enable the merge
and split of viscoelastic materials. Let csprij denote the

distance of two particles which are not interconnected,
and we generate a new spring between the two par-
ticles if csprij /h < βspr

ij , where βspr
ij = (βspr

i + βspr
j )/2,

(0 < βspr
i ), is a threshold to generate springs. By con-

trast, we remove the spring between two particles if
γspr
ij < ||xij − rij ||/h, where γspr

ij = (γspr
i + γspr

j )/2,

(0 < γspr
i ), is a parameter which restricts the extent of

deformations.

4.3 Position-based Scheme

The position-based scheme is similar to the spring-based
one since particle velocities are corrected based on pair-

wise connections between particles, and the connections
are added and removed as in the spring-based scheme.
The differences between the two schemes lie in how to

correct particle velocities and select relevant parame-
ters. This position-based scheme relies on positional
differences of particles to compute velocity correction

vector ∆vpb
i by adapting the idea of PBD [26,5] in-

stead of computing attraction forces:

∆vpb
i = − 1

∆t

Spb
i∑
j

kpbi + kpbj
2

mj

mi +mj
D(xi,xj)

xij

||xij ||
,

where Spb
i is the number of connected particles to par-

ticle i, kpbi (0 ≤ lpbi ≤ kpbi ≤ 1) is a coefficient for the

position-based velocity correction, and lpbi , the lower
limit of kpbi . Since the range of kpbi is bounded by two
sides, tuning parameters can be easier in the position-

based scheme than the spring-based one. We correct

Table 1 Simulation conditions and performances.

Fig.
# of particles Total Total
fluid/solid time simulation steps

1 65.8k/45.0k 10m:16s 60
2 (a) 17.1k/23.3k 5m:53s 150
2 (b) 17.1k/23.3k 4m:51s 150
2 (c) 17.1k/23.3k 4m:55s 150
3 (a) 8.2k/13.4k 6m:28s 200
3 (b) 8.2k/13.4k 6m:46s 200
5 (a) 8.2k/13.4k 6m:58s 150
5 (b) 8.2k/13.4k 6m:31s 150
7 33.4k/40.7k 12m:15s 200
8 45.2k/36.4k 58m:05s 170

particle velocities and modify kpb as in the spring-based

scheme.

5 Results

We implemented our method in C++ and parallelized it
with OpenMP 2.0. All the simulations were performed
on a PC with a 4-core Intel Core i7 3.50 GHz CPU
and RAM 16.0 GB. We gained accelerated simulation

performances by a factor from three to five with six
threads in total. In our simulations, fluid-solid coupling
is achieved by the method of Akinci et al. [1]. For fast

simulations, we used only 2 iterations for computing
pressure values in IISPH except Figs. 1, 3, and 5. In all
the simulations, parameters were empirically adjusted.

Our velocity correction schemes occupy roughly 16.4%
of the total computational time with 2 pressure itera-
tion in IISPH. We used off-line renderer POV-Ray 3.7

and the rendering needed about 20 seconds per frame
on average for Fig. 1. The accompanying video includes
several results produced with our method or existing

methods. We tabulate the simulation conditions and
performances in Table 1.

5.1 Velocity Correction Schemes

We compare the motions of viscoelastic fluids produced
with the three different schemes for velocity corrections

in order to clarify how the selection of the schemes af-
fects the resulting behaviors. Fig. 2 displays the motion
of a viscoelastic ball dropped onto the ground, where

we used the same number of neighboring particles in all
the schemes, and we can plausibly generate character-
istic behaviors of viscoelastic fluids. Our method using

the shape matching scheme (Fig. 2 (a)) enables smooth
transfers of deformation waves, which leads to preserv-
ing energy for a longer time as compared to the others.

Since the three schemes are not physically-based, we
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(a) Shape matching scheme

(b) Spring-based scheme

(c) Position-based scheme

Fig. 2 Motion comparisons of the three different velocity
correction schemes.

need to carefully adjust simulation parameters to gen-
erate similar results with different schemes.

As shown in Table 1, the simulation costs of the

methods using the spring-based scheme (Fig. 2 (b)) and
the position-based one (Fig. 2 (c)) are almost the same.
However, the method using the shape matching scheme

can be a bit costly due to the singular value decompo-
sition in SM, and besides needs more particles in the
set for SM to stabilize the simulation than the others.

5.2 Volume Preservation

We compare the existing methods and ours through

interactions between a viscoelastic ball with a moving
solid along a fixed path.

Shape matching scheme First, we elucidate the
difference between the method of Takamatsu and Kanai

[37], who used the combination of SPH and SM, and
ours using the shape matching scheme for velocity cor-
rections. Although Takamatsu and Kanai [37] employed

the basic SPH as their underlying fluid solver, which
suffers from significant volume loss, we replace the SPH
with IISPH for a fair comparison. Namely, we here re-

gard the method in [37] as the combination of IISPH

(a) Method of Takamatsu and Kanai [37]

(b) Our method using the shape matching scheme

Fig. 3 A volume comparison with a viscoelastic sphere com-
pressed by a moving solid along a fixed path.

and SM. In this scene, we used 5 pressure iterations

in IISPH, and we estimated an occupied volume V
by a summation of particles’ volume as V =

∑
i Vi =∑

i mi/ρ̂i, where Vi is the volume of particle i, and ρ̂i
the estimated density after only the particle i is moved
using Laplacian smoothing to reduce the effect of the
underestimated particle density on fluid surfaces.

Fig. 3 compares the two methods, and Fig. 4 shows
the profile of the comparison in terms of the volume
V . With the method of Takamatsu and Kanai [37], the

volume of the ball fluctuates due to the first collision
with the ground, and decreases and increases according
to the movement of the solid. In contrast, our method

can preserve the volume of the ball, which is fairly close
to the reference value, and achieve less fluctuations in
the volume. Additionally, the ball exhibits horizontally

spreading motions when being compressed, which can-
not be captured fully with the method in [37].

Spring-based scheme Second, we compare the
method of Clavet et al. [10], who combined SPH with a

spring-based method adopting a prediction-relaxation
scheme, with ours using the spring-based scheme. As
with the above previous method, since Clavet et al. [10]

used the basic SPH, we again use IISPH as the under-
lying fluid solver of their method. In this scenario, we
set the volume loss of 0.01% as a convergence criteria

in IISPH to clarify the differences of the two methods.



A Velocity Correcting Method for Volume Preserving Viscoelastic Fluids 7

0.015

0.025

0.035

0.045

0.055

0.065

0 20 40 60 80 100 120 140 160 180

V
o
lu

m
e 

V
 (

m
3
)

Simulation steps

Takamatsu and Kanai

Ours

Reference

Fig. 4 Changes in the volume of the viscoelastic sphere in
Fig. 3 according to simulation steps.

(a) Method of Clavet et al. [10]

(b) Our method using the spring-based scheme

Fig. 5 A comparison with a viscoelastic sphere compressed
by a moving solid along a fixed path.

Fig. 5 compares the two methods, and Fig. 6 gives
the profile of the number of the needed iterations in

Fig. 5. The method of Clavet et al. [10] changes par-
ticle positions in the prediction-relaxation scheme, and
these changes make the fluid solver fail or slow down

convergence of the iterations. As illustrated in Fig. 6,
the method of Clavet et al. [10] requires more pressure
iterations to enforce the incompressibility of the mate-

rial than our method when the material is compressed
by the solid, because spring forces tend to be strong and
lead to significant position displacements. Additionally,

though IISPH can produce satisfactory pressure values
to achieve the incompressibility of fluid, resulting posi-
tions through the time integration are not optimal, and

hence can cause significant oscillations in [10].
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Fig. 6 A profile of the number of needed pressure iterations
to achieve the volume loss of the material less than 0.01% in
Fig. 5 according to simulation steps.

Fig. 7 A ball with different viscoelasticity values dropped
onto a funnel (low viscoelascitiy: light purple, and high one:
dark purple).

5.3 Different Viscoelasticity Values

Fig. 7 demonstrates the effect of different viscoelastic-
ity values. In this scene, a ball is dropped onto a fun-
nel. While the balls with lower viscoelasticity values

smoothly fall through the funnel, the highly viscoelas-
tic ball needs longer time to pass through the funnel.
Additionally, in Figs. 7 (b) and (c), we can observe the

Barus effect (also known as die swell, exclude swell, and
Merrington effect) that a stream of viscoelastic fluids
swells wider than the diameter of an opening when the

stream goes through the opening. Our velocity correc-
tion method can plausibly generate such a special effect
of viscoelastic fluids.

Fig. 8 illustrates the merge of the two balls with dif-
ferent viscoelasticity values. Due to the update of par-

ticle connections, we can easily and naturally generate
adhesive behavior of the two viscoelastic balls.

6 Conclusions

We have presented a new particle-based method for
simulating volume preserving viscoelastic fluids by cor-
recting particle velocities based on particle positions.

The volume preservation is achieved by separating for-



8 Tetsuya Takahashi et al.

Fig. 8 Two balls with different viscoelasticity values collid-
ing with each other (low viscoelasticity: light purple and high
one: dark purple).

mulations for viscoelastic effects from computations for
incompressible fluids. To correct particle velocities, we
have provided three different schemes: shape matching,

spring-based, and position-based velocity corrections.
We have empirically proven that the three schemes can
plausibly simulate viscoelastic fluids, and that our meth-

od can preserve fluid volumes generating characteristic
viscoelastic motions such as Barus effect.

Since our method utilizes the geometric relations
of particles to correct particle velocities with several

simulation parameters instead of estimating viscoelas-
tic force fields, we cannot adopt real physical properties,
and needs to empirically adjust the parameters through

experiments in order to generate desirable viscoelastic
effects. For future work, we plan to address the prob-
lem by the control of fluid behavior, and investigating

further how to find appropriate simulation parameters.
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