
Real-time Rendering of Soap Bubbles Taking into Account Light Interference

Kei Iwasaki Keichi Matsuzawa Tomoyuki Nishita
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
Phone: +81.3.5841.4096 Fax: +81.3.5803.7288
{kei-i, keichi, nis}@nis-lab.is.s.u-tokyo.ac.jp

Abstract

In the field of computer graphics, simulation of physi-
cal phenomena is of great interest. We focus on the optical
effects of soap bubbles. Soap bubbles have fascinating col-
oration and interesting physical properties. Therefore they
are useful for the entertainment such as movies and games.
Soap bubbles change their shapes by surface tension and
external forces, and therefore their surface thickness also
changes. Since the thickness of the soap bubble is several
hundred nanometers, interference of the light occurs. This
paper proposes a fast rendering method for the soap bub-
bles taking into account light interference and dynamics.
In our method, the reflectivities of the thin film that is the
cause of the light interference are calculated in advance and
stored as textures. This makes it possible to render the de-
formable soap bubbles in real-time.

Keywords: light interference, graphics hardware, real-time
animation

1. Introduction

The simulation of natural phenomena is one of the most
challenging research fields in computer graphics. Soap bub-
bles have interesting physical properties and attractive col-
oration [15]. In this paper, we propose a real-time render-
ing method for soap bubbles taking into account light in-
terference. Soap bubbles form very thin layers. Since the
thickness of the soap bubble is close to the wavelength of
the visible light, fringes due to the light interference can
be seen. Several methods have been developed to render
the fringes [1, 2, 11, 12]. These methods employed a ray
tracing algorithm to render the soap bubbles. Although re-
alistic images can be generated by the ray tracing method,
the computational cost is expensive. Thus, it is only suit-
able for images and movies that do not require real-time
response. However, applications such as virtual reality and
games require real-time response. Therefore, the demand to
accelerate the rate of rendering is high.

To address this problem, this paper presents a real-time
rendering method for deformable soap bubbles taking into
account light interference. In the proposed method, the re-
flectivities of the thin film are calculated in advance and
stored as textures. Moreover, the rendering of objects re-
flected at the bubble surface is performed by using the dy-
namic cubical environment map method.

2. Previous Work

Several methods have been proposed to simulate and ren-
der the soap bubbles.

Dias [1] developed a method that modeled the interfer-
ence light phenomenon and displayed the soap bubble with
fringes. Li and Peng [11] extended Dias’ method to take the
polarization of light into account. Icart et al. [9] simulated
two dimensional soap froth. Glassner [4, 5] modeled the
clusters of two or three soap bubbles by using analytical so-
lutions for the geometry of soap bubble clusters. Ďurikovič
[3] treated a bubble as a set of particles and triangle patches.
He simulated the deformation of soap bubbles due to wind
forces and contacts with other objects. Kück et al. [10] sim-
ulated and rendered the liquid forms by representing foam
bubbles as fixed-size spheres. Realistic images of soap bub-
bles can be generated by using these methods. However,
these methods used a ray tracing algorithm whose compu-
tational cost is expensive. There have been several related
work about rendering light interference. Dias [2] proposed
a rendering method of optical phenomena of Newton’s ring.
Hirayama et al. [7, 8] developed a rendering method for the
interference effect on multilayer films. They took into ac-
count the smoothness of the surfaces coated with multilayer
films and demonstrated several materials such as alminum,
silicon, and copper. Sun [14] presented a method for trans-
forming colors into spectrum and rendering light interfer-
ence. These methods also employed a ray tracing algorithm
for the rendering.

In this paper, we accelerate the rendering of soap bubbles
taking into account light interference. The proposed method
can calculate the light interference caused by the variation



particles thin thick

deformed

Figure 1. Representation of soap bubble by
particles.

of the film thickness due to the interactions with wind and
other objects in real-time.

3. Simulation of Soap Bubble Dynamics

The simulation method of the soap bubble dynamics is
based on Ďuricovič model [3]. The surface of the soap bub-
ble is represented by triangular meshes and the vertices of
the triangular meshes are treated as particles (see Figure 1).
The soap bubble dynamics is simulated by solving the mo-
tion equation of each particle pi.

miẍi = Finternal + Fexternal − γẋi, (1)

where mi is the mass of particle pi and xi the position of
particle pi. In our method, each particle pi has the same
mass m. Finternal is the internal force and Fexternal is the
external force. The last term, γẋ, is the effect of damp-
ing, where γ is the damping constant. The internal force
Finternal consists of surface tension and the pressure dif-
ference inside and outside the bubble. The external force
Fexternal consists of gravity, drag force, force due to col-
lisions with other bubbles, and force due to contacts with
other objects. The calculation method for each force is de-
scribed in [3].

To calculate the light interference, the film thickness of
the soap bubble must be computed. As shown in Figure 1,
thickness di at particle pi is calculated from the areas of the
triangles that include particle pi in the following equation:

di = cd
m∑

j∈F (i)

Aj

, (2)

where F (i) is a set of indices of triangle patches including
particle pi, Aj is the area of triangle Fj , cd is the scaling
factor. The velocity ẋi is calculated from ẍi by the explicit
Euler method and then the position xi is calculated from ẋi.

4. Rendering Soap Bubbles

4.1. Basic Idea

The radiance Lp from point P on the bubble surface to
the viewpoint is expressed by the following equation.

Lp(λ) = (1 − R(λ, θ))×Lit(λ)+R(λ, θ)×Lir(λ) (3)

where λ is the wavelength, θ is the incident angle of the inci-
dent light, (1−R(λ, θ))Lit the transmitted light, R(λ, θ)Lir

the reflected light, and R(λ, θ) the reflectivity. We use the
previous method developed by Li et al. [11] to calculate re-
flectivity R(λ, θ). R(λ, θ) is expressed by the following
equation:

R(λ, θ) = 2R⊥2 1 − cos(δ(λ, θ))
1 + R⊥4 − 2R⊥2 cos(δ(λ, θ))

+ 2R‖
2 1 − cos(δ(λ, θ))
1 + R‖

4 − 2R‖
2 cos(δ(λ, θ))

, (4)

where R⊥ and R‖ are the amplitude reflectivities of perpen-
dicular and parallel to the plane of incidence, respectively.
The phase difference δ(λ, θ) is calculated from the follow-
ing equation:

δ(λ, θ) =
4π

λ
nd cos θ, (5)

where n is the refractive index of the soapy water, d the
thickness of the thin film. As shown in Equation (5), the
phase difference δ depends on only d, θ and λ. There-
fore, R(λ, θ) also depends on d, θ, λ, and is rewritten as
R(λ, θ, d).

4.2. Reflected Light

Incident light Lir(λ) consists of light from the light
source and light from the environment. We calculate the
reflection of the light sources (in this paper, we deal with
very small area light sources) and that of the environment
separately since the dynamic ranges are different. We first
describe the rendering method for the reflection of the light
sources, then the rendering method for that of the environ-
ment is discussed.

4.2.1 Reflected light from the light sources

The energy distribution of the light source E(λ) is prepared
since some light sources are difficult to represent at only
RGB components (e.g. sodium light). E(λ) is sampled at
every 10 [nm] from 350 [nm] to 800 [nm]. We calculate
R(λ, θ, d)E(λ) for each wavelength and finally convert the
reflected light to RGB components to display on a color
monitor. We calculate RGB components R(λ, θ, d)E(λ)
by integrating the product of R(λ, θ, d)E(λ) and the color
matching function over the entire visible spectrum [6]. The
integration R(λ, θ, d)E(λ) over the entire visible spectrum
is calculated for each d and θ. Finally, R(λ, θ, d)E(λ) is
stored as a texture that is called light source texture whose
parameters are d and θ.

Figure 2 shows the textures for calculating reflected
light. Figure 2(a) shows the light source texture for a
sodium light. Horizontal axis represents the thickness of
the film (from 0 [nm] (left) to 2000 [nm] (right)). Verti-
cal axis represents the cosines of incident angles (from 0.0
(bottom) to 1.0 (top)).



(a) light source texture for sodium light

(b) reflectivity texture
Figure 2. Textures for calculating reflected
light.

4.2.2 Reflected light from the environment

In the proposed method, the scene is framed by an ade-
quately large cube as shown in Figure 3(a). Incident light
from the environment is represented by environment map
textures that is usually sampled at RGB components. There-
fore, reflectivity R(λ, θ, d) is also sampled at RGB compo-
nents and stored as a texture whose parameters are d and
θ (see Figure 2(b)). Although several methods [13, 14] of
transformation from RGB color to spectrum may be applied
to the cube map textures, the proposed method can render
visibly convincing soap bubbles by taking account of RGB
components of reflected light from environment. To render
the reflected object near the soap bubble, we dynamically
generate cube map textures by rendering the background
and neighbour objects except for bubbles as seen from the
current center of the bubble (see Figure. 3(b)). This makes it
possible to render both the neighbour objects and the distant
environment. The creation of dynamic cube map textures
is performed by texture rendering. We use an off-screen
buffer technique proposed by Wynn [16] to accelerate the
process of texture rendering. Reflected radiance at the bub-
ble surface is calculated by multiplying the texture for the
reflectivities by dynamic cube map textures.

Though this technique can not express multiple reflec-
tions or reflected bubble images in other bubbles, the re-
flectivity of soapy water is small and therefore the effect
of multiple reflection can be ignored. The area of the soap
bubble surface where the reflectivity is high is almost par-
allel to the viewing ray (that is, the reflectivity is high if
the viewing ray is almost perpendicular to the normal of the
soap bubble surface) and the projected area onto the screen
is small, and therefore the effect of multiple reflection can
be ignored.

4.3. Transmitted Light

Transmitted light (1− R(λ, θ, d))Lit(λ) is the light that
comes from the background of the soap and is partially

bubble
bubble

objects

(a) scene framed by cube (b) dynamic cube map
Figure 3. Dynamic cubical environment map.

transmitted through the thin film of the soap bubble. Trans-
mitted light is stored in the frame buffer after the objects to
the rear of the soap bubbles are rendered. Since the film of
the soap bubble is very thin, the difference between the di-
rection of the refracted ray and the direction of the incident
ray can be ignored. Therefore, we can ignore the effects of
the refraction of the viewing ray.

4.4. Rendering Process

Since the soap bubble is transparent, we must render sur-
faces of the soap bubbles in order of decreasing distance
from the viewpoint. Therefore, polygons of the bubble have
to be sorted by each depth from the viewpoint. The bubble
surfaces, generated by recursively subdividing an icosahe-
dron three times, are 1,280 triangles and if there are several
such bubbles, the computational time to sort becomes large.
However, bubbles have the following properties.

• Bubbles can not penetrate each other.

• The whole shape is almost convex.

The viewing ray can rarely intersect the surface of the same
bubble more than three times according to the properties.
The bubbles are sorted by the position of their center of
mass in the proposed method. Back faces of the soap bubble
are rendered first, then front faces are rendered afterward.

The procedure of the rendering soap bubbles is summa-
rized as follows.

1. Render the background.

2. Repeat the following process for each soap bubble in
descending order from the viewpoint.

(a) Create the cube map textures.

(b) Map the reflectivity texture onto the soap bub-
ble. Render the bubble by multiplicative blend-
ing with the frame buffer (set the blending fac-
tor GL_ONE_MINUS_SRC_COLOR to calculate
1 − R(λ, θ, d)).

(c) Map the cube map textures and the texture of re-
flectivity to the soap bubble by using multiplica-
tive multitexturing function. Render the bubble
by additive blending with the bubble rendered at
step (b).



(d) Map the light source texture to the soap bubble.
Render the bubble by additive blending with the
bubble rendered at step (c).

5. Results

The following images are rendered using a windows ma-
chine (PentiumM 1.7GHz, 512MB RAM, and QuadroFX
Go700). Each bubble is created by recursively subdividing
an icosahedron three times.

5.1. Comparison between Proposed Method and
Ray Tracing

Figure 4 shows the comparison of images rendered by
using the ray tracing method and the proposed method.
There are two bubbles and one plane. The sizes of the
images are 400 × 400. In Figure 4(a), the rendering time
is about 34[sec] by using the ray tracing method. In Fig-
ure 4(b), the rendering time is about 0.03[sec] (19fps in-
cluding the simulation time 0.02[sec]) by using our method.
That is, the proposed method is 1000 times faster than the
ray tracing method. As shown in these figures, the qual-
ity of Figure 4(b) is almost the same as that of Figure 4(a).
In Figure 4(c), the rendering time is about 0.01[sec] (29fps
including the simulation) by using our method without dy-
namic texturing. This result suggests that we can render the
soap bubbles in real-time.

5.2. Interaction with Objects

Figures 5, 6, and 7 show stills from animations. Figure 5
shows stills from an animation of deformed bubbles due to
the wind force. Wind blows from left to right. As shown in
this figure, the variation of the color due to light interference
can be rendered. Figure 6 shows examples of a collision of
bubbles and a plane. Figure 7 shows stills from an anima-
tion of a collision of two bubbles. The computational time
for simulating soap bubble dynamics is about 0.02 [sec].

These results demonstrate that the proposed method can
generate realistic images of soap bubbles almost in real-
time. The accompanying movies1 show more impressive
results and demonstrate the usefulness of our method. The
accompanying movies consist of four animations (anima-
tion of deformed soap bubbles due to wind, animation of
collision with plane, animation of collision with bubbles,
and screen captured animation of demonstration).

6. Conclusion & Future Work
In this paper, we have proposed a rendering method for

soap bubbles. Since the thickness of the soap bubble be-
comes thinner than the wavelength of the visible ray, inter-
ference of the light occurs. This optical effect must be taken

1The movies can be seen at the following URL.
http://nis-lab.is.s.u-tokyo.ac.jp/˜kei-i/bubble/

into consideration to create realistic images of the soap bub-
bles. In our method, textures that store the reflectivities are
precalculated. This makes it possible to achieve the inter-
active rendering of the soap bubble by using graphics hard-
ware. Moreover, our method can render the reflection of
both a distant environment and of a reflected object that
is near the soap bubbles. An object reflected in the soap
bubble is rendered efficiently by a hardware-accelerated dy-
namic cubical environment map.

In future work, we want to apply our rendering method
to other materials with thin films such as pearls and opals.

Acknowledgments
We would like to thank Prof. Nelson Max (Lawrence

Livermore National Laboratory) for providing useful com-
ments on the manuscript.

References

[1] L.M. Dias,“Ray Tracing Interference Color,” IEEE Computer
Graphics and Applications, Vol.11, No.2, pp.54-60, 1991.

[2] L.M. Dias, “Ray Tracing Interference Color: Visualizing Newton’s
Rings,” IEEE Computer Graphics and Applications, Vol.14, No.3,
pp.17-20, 1994.

[3] R. Ďurikovič, “Animation of Soap Bubble Dynamics, Cluster For-
mation and Collision,” Computer Graphics Forum, Vol.20, No.3,
pp.67-76, 2001.

[4] A. Glassner, “Soap Bubbles: Part1,” IEEE Computer Graphics and
Applications, Vol.20, No.5, pp.76-84, 2000.

[5] A. Glassner, “Soap Bubbles: Part2,” IEEE Computer Graphics and
Applications, Vol.20, No.6, pp.99-109, 2000.

[6] R. Hall, “Illumination and Color in Computer Generated Imagery,”
Springer-Verlag, Berlin, 1989.

[7] H. Hirayama, K. Kaneda, H. Yamashita, Y. Monden, “An Accurate
Illumination Model for Objects Coated with Multilayer Films,” Com-
puters & Graphics, Vol.25, pp.391-400, 2001.

[8] H. Hirayama, K. Kaneda, H. Yamashita, Y.Yamaji, Y. Monden, “Vi-
sualization of Optical Phenomena Caused by Multilayer films Based
on Wave Optics,” The Visual Computer, Vol.17, No.2, pp.106-120,
2001.

[9] I. Icart, D. Arquès, “An Approach to Geometrical and Optical Simu-
lation of Soap Froth,” Computers & Graphics, Vol.23, No.3, pp.405-
418, 1999.

[10] H. Kück, C. Vogelgsang, G. Greiner, “Simulation and Rendering of
Liquid Foams,” Proc. Graphics Interface’02, pp.81-88, 2002.

[11] J. Li, Q. Peng, “A New Illumination Model for Scenes Containing
Thin Film Interference,” Proc. Pacific Graphics’96, pp.133-146,
1996.

[12] B. Smits, G. Meyer, “Newton’s Colors: Simulating Interference Phe-
nomena in Realistic Image Synthesis,” Proc. Eurographics Work-
shop on Photosimulation, Realism and Physics in Computer Graph-
ics, pp.185-194, 1990.

[13] B. Smits, “An RGB to Spectrum Conversion for Reflectances,” Jour-
nal of Graphics Tools, Vol.4, No.4, pp.11-22, 1999.

[14] Y. Sun, F.D. Fracchina, T.W. Calvert, M.S. Draw, “Deriving Spectra
from Colors and Rendering Interference,” IEEE Computer Graphics
and Applications, Vol.19, No.4, pp.61-67, 1999.

[15] D. Weaire, S. Hutzler, “The Physics of Foams,” Clarendon Press,
Oxford, 1999.

[16] C. Wynn, “Using P-Buffers for Off-Screen Rendering in OpenGL,”
http://developer.nvidia.com/.



(a) ray tracing method (b) proposed method (c) proposed method
without dynamic texturing

Figure 4. Comparison of images rendered by different methods.

Figure 5. An animation of deformed bubbles due to wind.

Figure 6. An animation of collision with plane.

Figure 7. An animation of collision with bubbles.


