Anti-Aliased and Real-Time Rendering of Scenes

with Light Scattering Effects

Takashi Imagire!?, Henry Johan?, Naoki Tamura', Tomoyuki Nishita'

! Department of Complexity Science and Engineering, The University of Tokyo, Tokyo, Japan

2 Namco Bandai Games Inc., Tokyo, Japan

3 School of Computer Engineering, Nanyang Technological University, Singapore

The original publication is available at www.springerlink.com

Abstract Recently, for real-time applications such as
games, the rendering of scenes with light scattering ef-
fects in the presence of volumetric objects such as smoke,
mist, etc, has gained much attention. Slice-based meth-
ods are well known techniques for achieving fast render-
ing of these effects. However, for real-time applications,
it is necessary to reduce the number of slice planes that
are used. As a result, aliasing (striped patterns) can ap-
pear in the rendered images. In this paper, we propose
a real-time rendering method for scenes containing volu-
metric objects that does not generate aliasing in the ren-
dered images. When a scene consists of volumetric and
polygonal objects, the proposed method also does not
generate aliasing at the boundaries between the polyg-
onal and the volumetric objects. Moreover, we are able
to reduce aliasing at shadows inside a volumetric object
that are cast by polygonal objects by interpolating the
occlusion rates of light at several locations. The proposed
method can be efficiently implemented on a GPU.

Key words volumetric object — real-time rendering —
anti-aliasing — GPU

1 Introduction

With the advancement in the processing capabilities of
GPU technology, more and more expressions can be real-
ized for real-time applications such as games and virtual
reality. One of the remaining challenges is the real-time
rendering of scenes that include volumetric objects, such
as smoke, mist, etc. To achieve fast rendering of these
objects, billboard-based methods have been developed.
In these methods, the texture of the volumetric object
is mapped onto simple rectangular polygons (billboards)
and the object is displayed by rendering the billboards;
thus fast rendering can be realized. However, when the
billboards intersect other objects in the scene, artifacts
can be observed at the intersection regions. Therefore,

in order to realize effects such as shafts of light, meth-
ods that sample the scene using a set of slice planes and
compute the light scattering at the slice planes have also
developed. However, in a similar way to billboards, these
methods will still produce artifacts at the intersections
between the slice planes and other objects in the scene.

Since smoke and mist are transparent objects that
can be described using their density distributions, we
can also use volume rendering methods for high-quality
rendering of these objects. Many methods have been pro-
posed for volume rendering, which can be roughly classi-
fied into two categories. The first category involves indi-
rect methods, for example the Marching cube method [1]
which generates polygons for the iso-surfaces and then
displays the polygons. In this technique, some additional
storage and processing are required to create the surface
polygons. The second category covers direct methods,
which integrate intensities along a viewing ray; for ex-
ample, the ray tracing method and the ray casting [2]
method. When using these methods, the integration is
computed approximately by sampling the intensities at
several points along the viewing ray.

With the recent advancement of GPU technology,
several methods for accelerating volume rendering us-
ing a GPU have been proposed [7-9,3,10,11,4,13,5,12,
6,14]. Most of these involve slice-based methods, which
work by slicing the volume data into several planes which
are represented using polygons and then visualizing the
volume data by rendering these planes from back-to-
front. Fast rendering can be achieved by implementing
the slice-based methods using a GPU. By controlling
the number of slice planes, it is possible to control the
trade-off between rendering speed and image quality. To
achieve real-time rendering, it is necessary to reduce the
number of slice planes. However, this can cause alias-
ing patterns to appear in the rendered images. Figure 1
shows rendered images that include aliasing of the type
that may be produced when we using a slice-based meth-
ods. These aliasing are easy to be noticed especially when
we move the objects or the viewpoint. In interactive ap-

(a) (b) () (d)

Takashi Imagire et al.

Fig. 1 Aliasing in images that are the results of rendering a volumetric object using a slice-based method; (a) shows aliasing
when the number of slices is very small compared with the resolution of the volumetric object (in this example, the volumetric
object is a uniform density sphere defined using voxels with a resolution of 128 x 128 x 128, and the number of slices for
rendering is four); (b) shows aliasing at the edges of the slice planes; (c) shows aliasing at the intersections between an opaque
polygonal object and the slice planes; (d) shows aliasing at the shadow cast by an opaque polygonal object.

plications where the viewpoint is often moved, it is very
crucial to eliminate these aliasing.

Up to now, several methods for removing aliasing
have been proposed. However, no effective method for
removing all four of the types of aliasing that are shown
in Figure 1 has been proposed as yet. In this paper, we
propose a real-time rendering method for scenes contain-
ing volumetric objects such as smoke and mist that does
not generate aliasing in the rendered images. For each
pixel in the rendered image, we determine the nearest
intersection point from a viewpoint between the viewing
ray and the opaque objects in the scene. Based on this
information, we compute a valid sampling path along
the viewing ray that does not intrude on the opaque ob-
jects in order to correctly sample the volumetric object
for intensity computation. The proposed method can be
implemented efficiently by using a GPU. Our method
utilizes the different processing parts of the GPU in a
balanced manner. As a result, we are able to speed up
the rendering process. Moreover, to reduce aliasing in
the shadow regions inside a volumetric object that are
cast by opaque objects, we compute the occlusion rate of
light at a particular location by averaging the occlusion
rates computed at several nearby locations.

The remainder of this paper is organized as follows.
Section 2 outlines related work. Section 3 presents the
details of our method. Section 4 describes the essen-
tial points for implementation. Rendering results will be
demonstrated in Section 5. Finally, we summarize the
paper in Section 6.

2 Related Work
In this section, we review some of the related work in
real-time volume rendering.

2.1 Volume rendering using a GPU

The slice-based volume rendering method [8] is performed
by arranging several slice planes at regular intervals,

sampling volumetric objects at the slice planes, and then
rendering the slice planes using a GPU. A slice plane is
a polygon generated by calculating the intersections be-
tween the bounding box of the volumetric object and
a plane. There are two methods for generating the slice
planes. The first of these is a method that slices volumet-
ric objects parallel to the screen (image-aligned slices).
The second method slices volumetric objects along the
axes of their volume local coordinates (object-aligned
slices) [7].

Rendering using the slice-based method is performed
as follows. First, we compute the slice planes, then, for
each vertex of the slice planes we assign the volume local
coordinates that are necessary for sampling the volumet-
ric object for color and opacity information. Finally, the
slice planes are rendered in ‘back-to-front’ order from the
viewpoint and the results are composited, taking into
account the opacity. In the rendering process, the vol-
ume local coordinates stored in the vertices of the slice
plane are interpolated to compute the volume local co-
ordinates for pixels inside the slice plane. To enable real-
time processing using a slice-based method, it is neces-
sary to limit the number of slice planes. However, this
can result in aliasing appearing in the rendered images.

2.2 Anti-aliasing

Interleaved sampling [4] reduces aliasing by synthesiz-
ing two or more pre-rendered images and then blending
these images while changing the weights of blending for
each image in each pixel. The pre-rendered images are
generated by rendering the volumetric object while shift-
ing the location of the slice planes. However, this method
creates periodic noise because a dither-pattern is used
periodically to calculate the weight of blending. More-
over, it is necessary to generate small-sized pre-rendered
images in order to achieve real-time rendering. This re-
sults in some deterioration of the quality of the final
image.

Anti-Aliased and Real-Time Rendering of Scenes with Light Scattering Effects 3

Engel et al. [11] and Guthe et al. [5] proposed a
method that pre-computes the integral of the transfer
function along the viewing ray and stores the results as a
texture. In the rendering process, the image is generated
by referring to the values stored in the texture. However,
this method cannot remove aliasing at the intersection
regions between a volumetric object and opaque objects.

The spherical billboard [15] technique eliminates alias-
ing by calculating the length of the path traveled by a
viewing-ray inside a volumetric object. The limitations
of this method are that it assumes that the volumetric
object is approximately spherical in shape and it cannot
remove the aliasing that is derived from shadows.

Kajihara et al. [14] proposed a method for remov-
ing aliasing around the intersections between a volumet-
ric object and opaque objects by using a Ray-Volume
Buffer. A Ray-Volume Buffer is a 3D buffer that stores
the light intensity and total opacity at each voxel. How-
ever, this method requires a great deal of memory to
store the Ray-Volume Buffer. Furthermore, it takes sev-
eral seconds to perform the rendering process when using
this method.

Dobashi et al. [13] proposed a method for reducing
aliasing in shadow regions by detecting the shadow re-
gions and then adding a number of slice planes in these
regions. However, this method requires a large number
of slice planes in order to remove aliasing at the intersec-
tions between the volumetric object and opaque objects.
As a result, it is difficult to achieve real-time rendering
in such cases.

In this paper, we introduce the concept of sampling
hulls for the anti-aliased rendering of volumetric ob-
jects. We divide the bounding box of the volumetric ob-
ject into several sampling hulls, render the hulls, and
then composite the results. A volumetric object inside
a sampling hull is rendered by computing the sampling
points inside the hull and integrating the light intensities
at the sampling points. Aliasing due to the presence of
opaque objects is removed by taking into account the po-
sition of the opaque objects when performing sampling
inside the sampling hulls. Moreover, aliasing at shadows
is reduced by interpolating the occlusion rates of light
at several locations.

3 Anti-Aliased Volume Rendering
3.1 Basic idea for removing aliasing

In this paper, a volumetric object is represented using
a set of voxels. The outermost part of the voxel region
defines the bounding box of the volumetric object. A
density value is defined for each voxel. Each voxel is ac-
cessed through a volume local coordinate. We assume
that there is one volumetric object inside a scene con-
sisting of opaque polygonal objects.

There are two causes of aliasing in slice-based meth-
ods. During the rendering process, slice-based methods

should not be visible

slice plane '/

viewpoint

slice plane *E %

should be visible

.) volume
viewpoint

volume — |

bounding box of volume

~
(a) (b)

Fig. 2 Causes of aliasing in slice-based methods; (a) shows
the shaded regions where a volumetric object exists but is not
considered during rendering; (b) shows dark shaded regions
that are mistakenly considered as if a volumetric object exists
in these regions.

consider the intersection regions between the slice planes
and the bounding box of a volumetric object that is
swept along the viewing rays (for instance, the unshaded
region inside the bounding box of the volume in Figure
2(a)). The density in the space between two slices is as-
sumed to be uniform according to the density of one of
the slices.

The first cause of aliasing is that there are regions
inside the volumetric objects that are visible from the
viewpoint but are not considered during the rendering
process. The shaded regions in Figure 2(a) are such re-
gions, and this can cause aliasing at the boundaries of
the volumetric object. The second cause of aliasing oc-
curs when, in the presence of opaque objects, there are
regions of volumetric objects that are inside the opaque
objects that should not be considered but are mistakenly
rendered. As a result, aliasing can appear at the bound-
aries between the volumetric and the opaque objects.
Figure 2(b) shows an example where there is an opaque
sphere inside a volumetric object. The dark shaded re-
gions in Figure 2(b) are regions where no volumetric ob-
ject exists, but, when using a slice-based method, they
are actually treated as if a volumetric object does exist
inside them.

To solve these two causes of aliasing, we compute a
valid sampling path along the viewing ray and perform
sampling along this path for intensity computation. The
valid sampling path will be explained in the next section.
In the presence of opaque objects, we make sure that the
path will not intrude on the opaque objects.

3.2 Rendering a volumetric object using sampling hulls

A GPU consists of multiple computation units that make
it possible to process several polygons and pixels in par-
allel [16]. In addition, computations such as shading, al-
pha blending, etc, can be performed simultaneously. The
processing speed of a GPU depends on the slowest pro-
cess among those processes that are performed simul-
taneously. In a typical GPU, memory access is consid-
ered to be a slow process. In the slice-based methods,

sampling hulls

screen
viewpoint

pixel X .
viewing
sampling points ray
Fig. 3 The sampling hulls. In this figure, we display a space
between neighboring sampling hulls to make the sampling
hulls easy to recognize (actually, there is no space between
sampling hulls).

rendering a slice plane involves alpha blending; that is,
it involves reading and writing to memory. Therefore,
when the number of slice planes is large, the slice-based
methods have high computational cost.

Our method is designed to take into account the per-
formance capabilities of the GPU. In our method, we re-
duce the requirement for alpha blending by introducing
the concept of sampling hulls. A sampling hull is de-
fined as a closed convex polyhedron resulting from cut-
ting the bounding box of a volumetric object parallel
to the screen at two locations (see Figure 3). When we
render the volumetric object, we perform multiple sam-
plings inside the sampling hull, integrate the scattering
light intensities at the sampling points, and perform al-
pha blending only once for each sampling hull. As a re-
sult, by using the same number of samplings, our method
can reduce the number of alpha blending operations that
are required compared to slice-based methods.

When using the proposed method, we have to decide
the number of sampling hulls and also the number of
sampling points inside each hull. If there are too many
sampling hulls, then the number of alpha blending op-
erations is large, and thus the rendering speed will be
slow. If the number of sampling hulls is too small, then
we have to increase the number of sampling points inside
the hulls in order to generate high-quality images. How-
ever, in this case, the computational cost for sampling
inside hulls is bigger than the cost for alpha blending.
As a result, this will slow down the rendering process.
In this paper, to realize real-time rendering, the optimal
number of sampling hulls and the number of sampling
points inside each hull are determined through experi-
ments (see Section 5 for details).

Efficient rendering of volumetric objects using sam-
pling hulls is implemented as follows. Assume that the
final rendered image is stored inside the frame buffer.
First, as mentioned above, we divide the bounding box
of the volumetric object into a set of sampling hulls (see
Figure 3). Next, we render the opaque objects in the
scene into the frame buffer. Then, we process the sam-
pling hulls in ‘back-to-front’ order with respect to the
screen. For each sampling hull, we render the volumetric

Takashi Imagire et al.

sampling hull s(Ra)
F (R
S (Ra) ~Volume
viewpoint Xa - » opaque
<3 7 i object
" sf(Rp) Rp
viewing

screen
ray

Fig. 4 The valid paths from s(R) to s”(R) for sampling
inside a sampling hull.

object inside the hull and composite the resulting image
with the image in the frame buffer using alpha blending.

We render a volumetric object inside a sampling hull
as follows. Assume R is the viewing ray from the view-
point through pixel X on the screen. Let s(R) be the in-
tersection point between the viewing ray R and the back
face of the sampling hull or the surface of an opaque ob-
ject, whichever is nearest to the viewpoint. s(R) will then
be the location of the first sampling point. We also define
s¥(R) as the intersection point between the viewing ray
R and the front face of the sampling hull or the surface
of an opaque object, whichever is nearest to the view-
point. Thus, the path from s(R) to s!'(R) is the valid
sampling path inside the sampling hull and we perform
the sampling along this valid path. Figure 4 shows some
examples.

Let IV be the number of sampling points on each valid
path. The location s;(R), i = 0,1,---, N — 1 of the i-th
sampling point is calculated as follows.

si(R) = s(R) +1i x As(R), (1)
As(R) = (s"(R) —s(R))/N. (2)

When the opacities at the voxels are given, the opac-
ity at each sampling point is computed as the corrected
opacity [17] (see Appendix A.1) taking into account the
sampling interval. For each sampling point, we compute
the intensity of the scattering light. The intensity at pixel
X is computed by integrating the intensities of the scat-
tering light at all of the sampling points.

It is obvious that the lengths of the valid sampling
paths can be different for each pixel. At first glance,
it seems that changing the number of sampling points
according to the length of the valid path will increase
the rendering efficiency. However, to implement this, we
have to use a branching command. Unfortunately, the
execution of branching commands is relatively slow when
using a GPU, and this decreases the rendering speed.
Therefore, in our method, we use the same number of
sampling points for all of the valid sampling paths.

3.3 Anti-aliased shadows

When the volumetric object is a medium such as smoke,
it is necessary to consider the volumetric shadow in space

Anti-Aliased and Real-Time Rendering of Scenes with Light Scattering Effects 5

additional
sampling points

\ viewing
X SURNSIR)

(R
S,-H(R)\S:\()

sampling
points

viewpoint

screen

Fig. 5 Additional sampling points for shadow computations.

that is caused by opaque objects. We propose the follow-
ing method for generating anti-aliased shadows. When
we compute the occlusion rate of light at a particular
sampling point, we reduce aliasing by interpolating the
occlusion rates at several nearby locations.

The occlusion rate at sampling point s;(R) is com-
puted as follows. First, we set additional sampling points
along the viewing ray R at the middle of s;(R) and
its neighbor sampling points (Figure 5). The additional
sampling points sf(R), j = 14,141 are set at the following
locations.

57 (R) = 0.5(s;(R) +s;-1(R)). 3)

Then, the occlusion rate at sampling point s;(R) is de-
termined by the weighted average using the following
equation.

Li(R) = (1/4)I7(R) + (1/2)i(R) + (/911 (R), (4)

where I;(R) is the occlusion rate at s;(R) and I]S(R), Jj=
i,1+1 are the occlusion rates at sf(R). In this paper, the
occlusion rates are computed using the variance shadow
map method [18]. We adopt the variance shadow map
method because it can generate soft shadows.

4 GPU Implementation

We assume that the volumetric object is stored inside the
texture memory. When the viewpoint or the volumetric
object moves, we divide the bounding box of the volu-
metric object into M pieces of sampling hulls by cutting
the bounding box parallel to the screen. This computa-
tion is performed in the CPU. The final rendered image
is stored in a frame buffer which we call the back buffer.
We also prepare a frame buffer that has the same size as
the back buffer, and we call this the local coordinates
map. The local coordinates map is used to store the vol-
ume local coordinates. It is necessary to provide a buffer
with sufficient precision for the local coordinates map. If
the voxel resolution of the volumetric object is less than
256, then we use an 8 bits integer buffer; otherwise we
use a floating point buffer.

The rendering process is performed in 2 + 2M steps
(Figure 6). We assume that we have already created a
shadow map using the variance shadow map method for

each light source [18]. In the first step, the opaque ob-
jects are rendered into the local coordinates map (Fig-
ure 6(a)). In this rendering process, the coordinates of
the objects are transformed into the volume local coor-
dinates and these local coordinates (x,y,z) are used as
the color (r,g,b) of the objects. In the second step, we
render the opaque objects into the back buffer using the
usual shading computation (Figure 6(b)).

The rest of the 2M steps are performed to render the
sampling hulls in back-to-front order from the screen.
We perform the following two steps for each sampling
hull. First, we render the back faces of the sampling hull
into the local coordinates map using the volume local
coordinates as colors (Figure 6(c)). For the depth test,
we use the z-buffer result from the previous step. As a
result of the depth test, the volume local coordinates of
opaque objects will be retained if the sampling hull is
occluded by opaque objects.

Next, we switch the rendering destination to the back
buffer. For each pixel X, we perform the following com-
putations. We use the volume local coordinates stored
in pixel X of the local coordinates map as the starting
point s(R), where R is the viewing ray from the view-
point through pixel X, for sampling inside the sampling
hull. The end point s (R) is computed by rendering the
front faces of the sampling hull using the volume local
coordinate as the attribute. Based on s(R) and s” (R),
we compute N sampling points (Equation 2), compute
the scattering light intensity at each sampling point by
considering the occlusion rates of the light, integrate the
scattering light intensities at the sampling points, and
composite the result with the value previously stored in-
side the back buffer. The pseudo-code of our algorithm
is shown in Figure 7.

The optimal number of sampling hulls M and the
number of sampling points inside each sampling hull NV
are decided based on the intended image quality and
the performance of the GPU. The image quality can
be increased by increasing the total number of sam-
pling points (M x N) per viewing ray. Even when we
use the same total number of sampling points, vary-
ing the values of M and N affects the rendering speed.
For instance, from our experiments, using a total of 32
sampling points, setting M = 1 and N = 32 will pro-
duce a slower rendering performance compared to setting
M = 8, N = 4. The reason for this is that when we use
only one sampling hull, most of the computation is car-
ried out in the ALU (Arithmetic and Logical Unit) of the
fragment shader, while the ROP (Rasterizing OPeration
unit), which blends a color to a frame buffer, is virtually
unused. As a result, there is an unbalanced utilization of
the processing units of the GPU, resulting in a decrease
in performance. In this paper, the optimal values of M
and N for each scene are determined by experiments (see
Section 5 for details).

(e) Step 2M+1

(f) Step 2M+2

Fig. 6 Result of each step of our rendering method. The
scene is a floating teapot inside a box. The light source is
a spotlight. (a),(c),(e) show the contents of the local coor-
dinates map and (b),(d),(f) show the contents of the back
buffer during the rendering.

5 Results

Figures 8-11 show various rendering results and overall
performance when using the proposed method. We use
fp16 (16 bits floating point) buffers during the rendering
processes. The rendering results are then converted to
the 8 bits format to produce the rendered images. The
sizes of the images are 720 x 540 pixels. In our exper-
iments, we use a desktop PC with an Intel Pentium D
3.2GHz CPU and an nVIDIA GeForce 7800 GTX GPU.
We implemented our method on the DirectX 9 platform.
For each scene, the optimal number of sampling hulls
and sampling points in each sampling hull are decided as
follows. First, we create reference images using a slice-
based method with 1024 slice planes. Then, we perform
experiments using the proposed method by varying the
number of sampling hulls and sampling points, and look
for the optimal values that yield the maximum render-
ing performance without producing any artifacts in the
rendered images compared to the reference images.
Figure 8 shows the results of rendering a foggy forest
scene. The fog is represented using voxels with a resolu-
tion of 128 x 128 x 128. Figures 8(a) and (b) show the
results obtained by the proposed method when setting
M =2, N =4and M =4, N = 8 respectively. There is
no aliasing in either images. However, due to an insuffi-
cient number of sampling points, the result in Figure 8(a)

Takashi Imagire et al.

// < : store the results in a frame buffer specified
// on the left hand side

LocalCoordinatesMap < transform the coordinates of
objects into volume local coordinates and render the
objects using the volume local coordinates as colors;

BackBuffer < render objects using the usual shading;

For i =1 to M (from back to front order)
B = back surface of hull ¢;
LocalCoordinatesMap < render B using the
volume local coordinates as colors;

F = front surface of hull 4;

BackBuffer < render F' using volume local
coordinates as colors and compute
(AxBackBuffer+C);

// A and C are computed using
// the subroutine described below
EndFor

Subroutine: compute C and A for each pixel
C = 0.0;
A =1.0;
For j=1to N
compute sampling point from volume local
coordinates of F' and LocalCoordinatesMap;
sampling color Cy and opacity Ao;
Ay = opacity correction of Ap;
C = A ><Co+(1.0—A0) XC;
A= (10— Ap) x 4;
EndFor
EndSubroutine

Fig. 7 Pseudo-code of our algorithm.

shows an unnatural color contrast. Figure 8(c) shows the
result of using a slice-based method, in which we set the
number of slices to 128. Using this method, striped pat-
terns can be seen at the intersections between the slice
planes of the fog and the polygonal model of the ground
(see Figure 8(d)). Although we can eliminate aliasing
such as this if we use 512 slices, the rendering perfor-
mance then drops to 26 fps. Table 1 shows the rendering
performance when we change the number of sampling
hulls M and the number of sampling points V.

Figure 9 shows the results of a water tank scene. The
water is modeled as a volumetric object with a voxel res-
olution of 128 x 64 x 64. Figures 9(a) and (b) show the re-
sults using our method. We rendered the scene from two
different viewpoints. The numbers of sampling hulls and
sampling points are set to 2 and 8, respectively. Figure
9(c) shows the result of using a slice-based method with
64 slices, where the viewpoint is set to be the same as
that in Figure 9(b). Using the above-mentioned param-
eters, both methods can render the scene at around 96
fps. However, when using the slice-based method, alias-
ing can be seen at the surface of the object inside the
water and also at the water tank (see Figure 9(d)).

Anti-Aliased and Real-Time Rendering of Scenes with Light Scattering Effects 7

Table 1 The changes of the frame rate for the foggy forest
scene when the number of sampling hulls and the number of
sampling points are changed when the total sampling count
is 32.

Number of hulls 1 2 4 8 16 32
Number of samples 32 16 8 4 2 1

fps 50 59 64 62 55 47

Figure 10 shows a scene that includes a teapot in-
side a room with two light sources. The space inside
the room is modeled as a volumetric object. For each
voxel, we compute the intensity of the scattering light,
taking into account the locations and the directions of
the light sources. We neglect the phase function when
computing the intensity of the scattering light. To com-
pute shadows, we create shadow maps with a resolution
of 256 x 256. The directions of the light sources change
with time. Figures 10(a) and (b) show the results of the
proposed method using 4 sampling hulls and 4 sampling
points inside each hull. The light directions are different
in the two images. Figure 10(c) shows the result of the
slice-based method using 32 slices. Figure 10(d) shows
the aliasing in Figure 10(c). For comparison, our method
does not generate aliasing in the rendered image (Figure
10(e)) and the rendering process is faster than it is for
the slice-based method.

Figure 11 shows a scene containing a Buddha with
one moving spotlight. We store the intensity of the scat-
tering light due to the spotlight as a volumetric object
that is defined in the local coordinate system of the spot-
light with a resolution of 64 x 64 x 128. Thus, when the
spotlight moves, the volumetric object also moves ac-
cordingly. This way of representing the light distribu-
tion of a particular light source is useful for accelerating
the rendering process in games applications. We create
a shadow map with a resolution of 256 x 256 for gener-
ating shadows. Figures 11(a) and (c) show the results of
the proposed method (8 sampling hulls and 8 sampling
points) whereas Figures 11(b) and (d) are the results of
a slice-based method with 64 slices. Figure 11(c) shows
that the proposed method can reduce aliasing in volu-
metric shadows when compared to a slice-based method
(Figure 11(d)).

6 Conclusion and Future Work

In this paper, we have proposed a method for anti-aliased
volume rendering. For each viewing ray, we compute a
valid sampling path that takes into account intersections
between the viewing ray and opaque objects to correctly
sample the volumetric object. To efficiently execute our
method on a GPU, we introduce the concept of sam-
pling hulls. Most of the processing steps in the proposed
method can be implemented on a GPU. In addition, our
method utilizes the various processing units inside the

(d)
Our method (2 hulls, 4 samples) 80 fps
Our method (4 hulls, 8 samples) 64 fps
Slice-based method (128 slices) 70 fps (has aliasing)
Slice-based method (512 slices) 26 fps

Fig. 8 A foggy forest scene. (a) and (b) are the results of
the proposed method using 2 hulls with 4 samples and 4 hulls
with 8 samples, respectively. (c) is the result of a slice-based
method using 128 slices. (d) shows the aliasing in (c).

Our method (2 hulls, 8 samples)
Slice-based method (64 slices)

96 fps
96 fps (has aliasing)

Fig. 9 A water tank scene. There is sand at the bottom
of the water tank and a Buddha statue lying on the sand.
(a) and (b) are the results of the proposed method (2 hulls,
8 samples). (c) is the result of a slice-based method with 64
slices. (b) and (c) are rendered from the same viewpoint. The
rendering performances of both methods are 96 fps. However,
(c) has aliasing that is shown in (d).

GPU in a balanced manner. As a result, it is possible to
perform high-quality volume rendering in real-time us-
ing the proposed method. We also reduce the aliasing
at shadows by interpolating the occlusion rates of light
at several locations to compute the occlusion rate at a
sampling point.

(a)

(c)

(¢)
Our method (4 hulls, 4 samples)
Slice-based method (32 slices)

82 fps
68 fps (has aliasing)

Fig. 10 A teapot on the top of arod in a room with two light
sources. (a) and (b) are the results of the proposed method (4
hulls, 4 samples). (c) is the result using a slice-based method
(32 slices). (d) shows the aliasing in (c). For comparison, (e)
shows that our method does not generate aliasing.

In our method, the image quality and the rendering
performance depend on the number of sampling hulls
and the number of sampling points inside a hull. Cur-
rently, we determine these values experimentally. For fu-
ture work, we want to determine the optimal values of
these parameters automatically by taking into consider-
ation the performance of the hardware, the resolution of
the volume data, and the details of the geometry of the
opaque objects.

References

1. W. E. Lorensen, H. E. Cline: Marching cube: a high res-
olution 3D surface construction algorithm. In: Computer
Graphics (Proc. SIGGRAPH 1978), pp. 163-169 (1978).

2. H. Tuy and L. Tuy: Direct 2D display of 3D objects. In:
IEEE Computer Graphics and Applications, 4(10), pp.
29-33 (1984).

3. R. Westermann, T. Ertl: Efficiently using graphics hard-
ware in volume rendering applications. In: Computer
Graphics (Proc. SIGGRAPH 1998), pp. 291-294 (1998).

4. A. Keller, W. Heidrich: Interleaved sampling. In: Proc.
of the 12th Eurographics Workshop on Rendering Tech-
niques, pp. 269-276 (2001).

5. S Guthe, S, Roettger, A. Schieber, W. Strasser, T, Ertl:
High-quality unstructured volume rendering on the PC

Takashi Imagire et al.

Our method (8 hulls, 8 samples)
Slice-based method (64 slices)

77 fps
203 fps (has aliasing)

Fig. 11 A Buddha statue with a moving spotlight. (a) and
(c) are the results of the proposed method (8 hulls, 8 sam-
ples). (b) and (d) are the results of a slice-based method (64
slices). We can see the aliasing on the face and the stomach
of the Buddha in (b) and inside the volumetric shadow in

(d).

platform. In: SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pp. 119-126 (2002).

6. J. Kruger, R. Westermann: Acceleration techniques for
GPU-based volume rendering. In: IEEE Visualization
2003, pp. 287-292 (2003).

7. L.A. Westover: Splatting: a parallel, feed-forward volume
rendering algorithm. In: doctoral thesis, Dept. of Com-
puter Science, Univ. of North Carolina at Chapel Hill,
Chapel Hill, N.C., (1991).

8. T. J. Cullip, U. Neumann: Accelerating volume recon-
struction with 3D texture hardware. In: Tech. Rep. TR93-
027, University of North Carolina, Chapel Hill N.C.
(1994).

9. M. Brady, K. Jung, H.T. Nguyen, T Nguyen: Two-phase
perspective ray casting for interactive volume navigation.
In: Visualization '97, pp. 183-190 (1997).

10. C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, T. Ertl:
Interactive volume rendering on standard PC graphics
hardware using multitextures and multi-stage rasteriza-
tion. In: SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware, pp. 109-119 (2000).

11. K. Engel, M. Kraus, T. Ertl: High-quality pre-integrated
volume rendering using hardware-accelerated pixel shad-
ing. In: Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pp. 9-16 (2001).

12. J. Kniss, S. Premoze, C. Hansen, D. Ebert: Interactive
translucent volume rendering and procedural modeling.
In: IEEE Visualization 2002, pp. 168-176 (2002).

13. Y. Dobashi, T. Yamamoto, T. Nishita: Interactive ren-
dering of atmospheric scattering effects using graphics
hardware. In: Proc. of Graphics Hardware 2002, pp. 99—
108 (2002).

14. Y. Kajihara, H. Takahashi, M. Nakajima: A method of
rendering scenes including volumetric objects using ray-

Anti-Aliased and Real-Time Rendering of Scenes with Light Scattering Effects

volume buffers. In: Proc. of Computer Graphics Interna-
tional 2003, pp. 930-235 (2003).

15. T. Umenhoffer, L. Szirmay-Kalos, G. Szijarto: Spherical
billboards and their application to rendering explosions.
In: Proc. of the 2006 Conference on Graphics Interface,
pp- 57-63 (2006).

16. J. Montrym, H. Moreton: The GeForce 6800. In: IEEE
Micro, Vol 25, No 2, 41-51 (2005)

17. D. Laur, P. Hanrahan: Hierarchical splatting: A progres-
sive refinement algorithm for volume rendering. In: Com-
puter Graphics (Proc. SIGGRAPH 1991), pp. 285-288
(1991).

18. W. Donnelly, A. Lauritzen: Variance shadow maps. In:
Proc. of the Symposium on Interactive 3D Graphics and
Games, pp. 161-165 (2006).

A Appendix
A.1 Corrected opacity

Let Ady be the voxel interval. Assume that the opacity «
that is stored in a voxel is computed by using the opacity
transfer function with Ady as the sampling interval.

a=1-¢ ¢4, (5)

Here, ¢ is an extinction coefficient. Then, for another
sampling interval Ad, the corrected opacity can be com-
puted as follows.

_Ad
Qecorrected = 1-— [1 - Oé] Ado (6)

