
A Fast Rendering Technique of Transparent Objects and Caustics

Kei Iwasaki
Wakayama University

iwasaki@sys.wakayama-u.ac.jp

Fujiichi Yoshimoto
Wakayama University

fuji@sys.wakayama-u.ac.jp

Yoshinori Dobashi
Hokkaido University

doba@nis-ei.eng.hokudai.ac.jp

Tomoyuki Nishita
The University of Tokyo
nis@is.s.u-tokyo.ac.jp

Abstract
Rendering refractive caustics from transparent
objects on opaque objects is computationally in-
tensive. This paper presents a fast rendering
technique for transparent objects and refractive
caustics due to transparent objects on the opaque
object. To calculate the intensities of caustics,
we set virtual planes around the opaque object
and store the intensities of caustics on the vir-
tual planes as textures. Caustics are then ren-
dered by using these textures. Our implemen-
tation, which additionally uses a GPU acceler-
ator, enables us to render refractive caustics at
interactive frame rates. We demonstrate this in-
teractive rendering additionally for translation,
rotation of both transparent objects and opaque
objects, as well as for changing light and view-
ing directions.
Keywords: caustics, transparent, refraction,
global illumination, graphics hardware

1 Introduction

Transparent materials like glass exist widely in
real world. If the transparent object is illumi-
nated, caustics are formed by transmitted light
through the transparent object (see Fig. 1). Re-
search into rendering caustics is a challenging
task and various methods have been developed
to achieve this purpose. Due to the complex-
ity of the caustics calculation, the computational
cost for rendering caustics is high. In this pa-
per, we present an efficient rendering method
for transparent objects and caustics using a pro-
grammable graphics processing unit (GPU).

To render refractive caustics formed by trans-

Figure 1: A glass ball casts caustics and shad-
ows on a teapot. This image can be
rendered at 18.0 fps on a desktop PC.

mitted light, we calculate the illumination dis-
tribution on the surface illuminated by the trans-
mitted rays. In this paper, we call an opaque ob-
ject that is illuminated by the transparent objects
a target object. We assume that the surfaces of
the target objects are diffuse surfaces.

To calculate the illumination distribution of
the target object, we set virtual planes around
the target object. The illumination distribution
of the caustics on the surface of the target ob-
ject is calculated by using the illumination dis-
tribution on the virtual planes. The illumination
distributions of caustics on virtual planes are ef-
ficiently calculated by using the GPU and are
stored as textures. Caustics on the target object
are rendered by using the textures, the normal
information and depth information of the target
object. This process is accelerated by using the
GPU.

Our method has the following features.

• Refractive caustics due to transparent ob-
jects can be rendered efficiently using the
GPU.

• Our method allows the rapid rendering of
refractive caustics under rigid body trans-
formations (rotation and translation) and
with changing light directions.

• Fast rendering of refractive caustics on tar-
get objects with rigid body transforma-
tions.

2 Previous Work

Many methods have been proposed to render
caustics due to transparent objects [1, 2, 3, 4, 5].
Although realistic images that include caustics
can be rendered by using these methods, they
are all computationally intensive. Fast rendering
methods for caustics using GPUs have also been
developed. Purcell et al. [6] proposed a pho-
ton mapping method for GPUs. This method,
however, does not achieve real-time rendering.
Sloan et al. [7] presented precomputed radiance
transfer to achieve real-time rendering of inter-
reflections, soft shadows and caustics. Wand
and Strasser [8] proposed a hardware accelera-
tion method for rendering reflective caustics due
to specular objects. These methods, however,
do not deal with refractive caustics from trans-
parent objects.

Several methods have been developed to
render refractive caustics at interactive frame
rates [9, 10, 11]. However, these methods re-
quire several CPUs to render caustics at interac-
tive frame rates. Therefore, these methods are
much slower than our method that can achieve
interactive frame rates on a current standard PC
(and 1CPU). Iwasaki et al. [12] proposed an effi-
cient rendering method for caustics due to trans-
parent object. This method, however, is limited
to caustics on simple shape surfaces. We extend
this method to handling the complex shape of
the target object.

3 Overview

We focus on the refractive caustics on the dif-
fuse surface due to transparent objects, and re-
fractions and transmissions of light due to the
transparent objects. Though our method deals
with the refractive caustics, reflective caustics
can be rendered by extending our method to take

virtual planes

transparent
object

incident light

target object

illumination textures

Figure 2: Virtual planes and illumination tex-
tures.

into account reflected light from transparent ob-
ject. Our method can deal with the geometry
of transparent and diffuse materials represented
by triangle meshes. The light sources we can
deal with are a parallel light source, a point light
source. We handle a linear light source approxi-
mated by a set of point light sources.

To render refractive caustics on a diffuse sur-
face due to a transparent object, the refraction of
the incident light at the transparent object sur-
face and its transmission through the transparent
object must be taken into consideration. In our
method, the transmitted rays can be calculated
by referring to a light transport table [12], which
stores the information of the outgoing rays for
each incident rays onto each vertex. The light
tranport table is calculated in advance. The light
transport table allows us to rapidly render refrac-
tive caustics from moving and rotating transpar-
ent objects with changes of the light direction.

Next the illumination distribution on the tar-
get object illuminated by the converged and
diverged transmitted light must be calculated.
This calculation requires intersection tests be-
tween the transmitted rays and the surfaces of
the target objects. The computational cost of
rendering refractive caustics is therefore quite
expensive.

To address this problem, we set virtual planes
around the target object and calculate the illu-
mination distribution of the virtual planes (see
Fig. 2). This reduces the computational time
since the intersection calculation between the
transmitted rays and many polygons represent-
ing the target object surface is replaced with that
between the rays and the plane. Then the illu-
mination distribution of the target object is ap-
proximated by using the illumination distribu-
tion of the virtual planes. We call the illumina-
tion distriution on each virtual plane an illumi-

nation texture.
In the previous method [13], the virtual planes

are also used to calculate the intensities of caus-
tics. However, these virtual planes are set per-
pendicular to the average directions of the re-
fracted viewing rays. Therefore, the virtual
planes depend on the viewpoint and this in-
dicates that the caustics intensities are calcu-
lated when the viewpoint changes. On the other
hand, our new method does not depend on the
viewpoint, and therefore we can render caustics
without re-calculation of the caustics intensities
when the viewpoint changes.

To render the images of refracted objects
through the transparent objects, we use the
sliced object images [13]. The calculation of the
transmitted viewing rays are accelerated by us-
ing the light transport table [12]. To create sliced
object images, virtual planes are set perpendic-
ular to the transmitted viewing rays. Then the
sliced object images are created by projecting a
part of the target object surface between two ad-
jacent virtual planes onto the virtual plane. The
illumination textures are mapped onto the tar-
get object when creating the sliced object im-
ages. Next, by mapping the sliced object im-
ages onto the transparent object surface, the im-
ages of refracted objects taking into account re-
fractive caustics are rendered. (See the previous
method [13] for more details.)

4 Rendering Caustics

4.1 Basic Concept

To render refractive caustics, we employ the
idea of illumination volumes proposed by
Nishita et al. [14]. We calculate the transmitted
light to create these illumination volumes. The
incident direction of the light at each vertex of
the transparent object is computed first to cal-
culate the transmitted light. Then, the outgoing
direction and position after passing through the
transparent object are obtained by simply refer-
ring to the light transport table using the incident
light direction at each vertex.

As shown in Fig. 3, by sweeping the refracted
outgoing rays, illumination volumes are created.
The areas of intersection between the illumina-
tion volumes and the object surface are calcu-
lated and the intensities of these are accumulated

incident
light

 θ

light source

P
Sp

S

target object

transparent
object

illumination
volume

Lin(λ)

virtual
plane

δ

Q
normal

S0

γ

Figure 3: Illumination volume.

to render refractive caustics due to the transpar-
ent object. The intensity LP at point P of the
intersection area is calculated by using the fol-
lowing equation (see Fig. 3).

LP (λ) = Lin(λ) cos θFt(λ)Fpρd(λ), (1)

where λ is the wavelength, which is sampled for
RGB components, Lin(λ) cos θ is the intensity
of the incident light onto the triangular mesh of
the transparent object surface, and Ft(λ) is the
total Fresnel transmittance. Fp is the flux ra-
tio and is calculated from the following equa-
tion Fp = S/Sp, where Sp is the area of the
cross section between the illumination volume
and the surface of the target object, and S is
the area of the triangular mesh on the surface
of the transparent object. Also, ρd(λ) is the dif-
fuse reflectance of the surface of the target ob-
ject. The calculation of the intersected areas are
time-consuming since it requires many intersec-
tion tests. In our method, the area of the in-
tersection area Sp is approximated by using the
area of the intersection triangle S0 between the
virtual plane and the illumination volume (see
Fig. 3). The area Sp is approximated by S0

cosδ
cosγ ,

where δ and γ are angles between the transmit-
ted ray and the normal of the virtual plane, and
between the transmitted rays and the normal of
the target object surface, respectively.

4.2 Creation of Illumination Textures

Caustics on the target object surface are calcu-
lated by using the illumination textures. By us-
ing the area S0, Eq. (1) is rewritten as the fol-
lowing equations,

LP (λ) = IQ(λ)ρd(λ), (2)

IQ(λ) = Lin(λ) cos θFt(λ)
S cos γ

S0 cos δ
. (3)

virtual plane

intersection
triangle

normal map

Q

illumination volume

2. texture coordinate of Q

3. opposite direction

of transmitted light
(sq,tq)

1. incident intensity

Figure 4: Creation of illumination textures using
vertex program. Three parameters are
set to each vertex of the intersection
triangle.

The illumination texture stores the incident in-
tensity IQ at point Q of the intersection trian-
gle. The caustics intensity at point P on the
target object is calculated by multiplying the
diffuse reflectance ρd(λ). Illumination textures
are created by drawing the intersection triangles
and accumulating the intensities expressed by
Eq. (3). We set a virtual camera so that the view-
ing direction is parallel to the average direction
of the transmitted lights.

To calculate the incident intensity IQ(λ), the
dot product of the direction vector of the trans-
mitted light and the normal vector of the target
object surface, cos γ, must be calculated. In the
previous work on the caustics due to water sur-
faces [13], this term is only calculated approxi-
mately. In our method, we calculate the cosine
term with per pixel accuracy by using vertex and
fragment programs. The information of the nor-
mal of the target object surface is stored in the
normal map. The information of the depth val-
ues from the virtual camera is also calculated.
The depth information is used to calculate the
shadows.

Fig. 4 provides a visual overview of the vertex
program. First, we calculate the intersection tri-
angle between the illumination volume and the
virtual plane. Then three parameters are set to
vertex Q of the intersection triangle. One is the
intensity Lin(λ) cos θFt(λ) S

S0 cos δ that is the in-
cident intensity IQ except for cos γ. A second
parameter is the texture coordinate of vertex Q
to refer to the normal map. The texture coordi-
nate of vertex Q is calculated by using the idea
of projection texturing [15]. Our third parameter
is the opposite direction of the transmitted light
onto vertex Q.

In the fragment program of the GPU, we cal-
culate the term cos γ per pixel of the illumina-

 z

 0
 d0

 d1 d2

virtual camera

virtual plane

P

zp
c

illumination texture 0

illumination texture 1

 L1

 L0

target object

Figure 5: Rendering caustics using illumination
textures.

tion texture. The normal information is obtained
by addressing the normal map texture. The tex-
ture coordinate for each pixel is interpolated by
using the texture coordinates set in the vertex
program. Each pixel is assigned the opposite di-
rection of the transmitted light, the cosine term
is calculated by the dot product of the normal
vector and the opposite direction vector of the
transmitted light. The intensity IQ is calculated
by multiplying the first parameter and the cosine
term per pixel. The illumination textures are cre-
ated by drawing the pixel with the intensity IQ

and accumulating the intensities.

4.3 Rendering Caustics Using
Illumination Textures

Caustics on the target object are rendered by us-
ing illumination textures. The rendering of caus-
tics on the target object surfaces is performed by
using vertex and fragment programs. The inten-
sity at point P on the target object is calculated
by multiplying the incident intensity at P , that is
stored in illumination textures, by the diffuse re-
flectance ρd(λ). Therefore, to calculate the inci-
dent intensity at point P , the texture coordinate
of point P in texture space of the illumination
texture are calculated. This calculation is also
based on the projection texturing method [15].

In a fragment program, the incident intensity
at point P is calculated as follows. We first de-
termine whether point P is visible from the vir-
tual camera by using the depth information of
the normal map texture. If point P is not visi-
ble from the virtual camera, point P is occluded
by the target object surface and is considered as
shadowed regions. Thus the color of the pixel
corresponding to point P is assigned the inten-
sity of the ambient light. If point P is visible
from the virtual camera, we consider that point
P is illuminated by transmitted light. The color

of the pixel corresponding to illuminated point
P is calculated as follows.

Let the number of virtual planes be n and the
depth value of the ith virtual plane from the vir-
tual camera be di (d0 < d1 < · · · < dn−1).
Two adjacent virtual planes of point P are de-
termined by finding the depth values that satisfy
di ≤ zc

p < di+1, where zc
p is the depth of P from

the virtual camera. Next, the incident intensity
at point P is calculated by using the illumination
textures corresponding to the ith virtual plane
and (i+1)th virtual plane. The incident intensity
at point P is interpolated by the intensities of the
illumination textures i and i + 1. Finally, the in-
tensity at point P is calculated by multiplying
the incident intensity by the diffuse reflectance
ρd(λ).

5 Results

Figs. 6(a) and (b) show refractive caustics on a
buddha model due to a glass ball. In these fig-
ures, refracted buddha model with caustics can
be seen through the glass ball. The rendering
frame rates for Figs. 6(a) and (b) are 7.8fps.
Fig. 6(c) shows caustics on a buddha model due
to a glass teapot. This figure demonstrates that
our method can create caustics on complex tar-
get object surfaces from complex shape trans-
parent object. Fig. 6(d) shows refractive caus-
tics from the glass dolphin due to a linear light
source. The linear light source is approximated
by 8 point light sources. We calculate caustics
and shadows for each point light source and ac-
cumulate the results. The rendering frame rates
for Figs. 6(c) and (d) are 6.6fps and 3.6fps, re-
spectively.

These images were created on a desktop PC
(Pentium4 3.4GHz, 2GB main memory) with a
nVidia GeForce 6800 GTO. The image size of
these figures is 640 × 480. The sizes of the
light transport tables used in these figures are
less than 20MB. The number of the sliced ob-
ject images in all figures except for Fig. 1 is 6.
In Fig. 1, the number of the sliced object image
is 1. The number of the virtual planes is 4. The
size of the sliced object images and that of the
illumination textures are 512×512. These pa-
rameters are determined experimentally. Since
our method can render transparent objects and

refractive caustics at interactive frame rates, the
parameters can be changed interactively.

The examples shown in this section demon-
strate that our method can render refractive caus-
tics and transparent objects at interactive frame
rates.

6 Conclusion and Future Work

We have presented a fast rendering technique
for transparent objects and caustics. We calcu-
late the intensity of caustics on the diffuse ob-
ject surfaces by using the illumination textures
that store the illumination distribution on vir-
tual planes around the object. This indicates
that our method can render caustics on the dif-
fuse surfaces without the intersection calcula-
tions between the transmitted lights and the sur-
face, whose computational costs are expensive.
The illumination textures are created efficiently
by using a GPU. The rendering of caustics on
the surface is performed by mapping the illumi-
nation textures. In our method, caustics and the
shadows are rendered in the same process using
programmable graphics hardware.

The limitation of this technique is that it takes
into account only refraction of light, and does
not consider the rays which are refracted out af-
ter being reflected inside the object. This limi-
tation can be solved by taking the reflection of
light into account to calculate the light transport
table. However, this results in the huge memory
size for the light transport table and the compu-
tational costs become very expensive. We con-
sider that the refracted rays are the most impor-
tant components to render caustics and therefore
we neglect other paths.

In future work, we plan to render caustics un-
der area light sources and render caustics un-
der distant lighting expressed by an environment
map.

References

[1] J Arvo. Backward ray tracing. In Course Note #12
of SIGGRAPH’86, pages 259–263, 1986.

[2] M Shinya, T Saito, and T Takahashi. Rendering
techniques for transparent objects. In Proceedings
of Graphics Interface’89, pages 173–181, 1989.

[3] H. W. Jensen. Rendering caustics on non-lambertian
surfaces. In Proceedings of Graphics Interface’96,
pages 116–121, 1996.

(a) Refractive caustics on a buddha (b) Refracted buddha and walls
due to a colored glass ball (6.4K vertices). through a glass ball (6.4K vertices).

(c) Refractive caustics on buddha (d) Refractive caustics due
due to a glass teapot (13.0K vertices). to a glass dolphin (8.9K vertices) under linear light.

Figure 6: Examples of refractive caustics.

[4] H. W. Jensen and P. H. Christensen. Efficient simu-
lation of light transport in scenes with participating
media using photon maps. In Proceedings of SIG-
GRAPH’98, Computer Graphics Proceedings, An-
nual Conference Series, pages 311–320. ACM, 1998.

[5] N. Briere and P Poulin. Adaptive representation
of specular light flux. Computer Graphics Forum,
20(2):145–159, 2001.

[6] T. J. Purcell, C. Donner, M. Cammarano, H. W.
Jensen, and P. Hanrahan. Photon mapping on pro-
grammable graphics hardware. In Proceedings of
Graphics Hardware 2003, pages 41–50, 2003.

[7] P Sloan, J Kautz, and J Snyder. Precomputed ra-
diance transfer for real-time rendering in dynamic,
low-frequency lighting environments. In Proceed-
ings of SIGGRAPH 2002, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 527–536.
ACM, 2002.

[8] M Wand and W Straβer. Real-time caustics. Com-
puter Graphics Forum, 22(3):610–619, 2003.

[9] I. Wald, T. Kollig, C. Benthin, A. Keller, and
P. Slusallek. Interactive global illumination using fast
ray tracing. In Proceedings of Eurographics Work-
shop on Rendering, pages 15–24, 2002.

[10] J. Gunther, I. Wald, and P. Slusallek. Realtime
caustics using distributed photon mapping. In Pro-

ceedings of Eurographics Symposium on Rendering,
pages 111–121, 2004.

[11] C Wyman, C Hansen, and P Shirley. Interactive caus-
tics using local precomputed irradiance. In Proceed-
ings of Pacific Graphics, pages 143–151, 2004.

[12] K. Iwasaki, F. Yoshimoto, Y. Dobashi, and T. Nishita.
A rapid rendering method for caustics arising from
refraction by transparent object. In Proceedings of
Cyberworld 2004, pages 39–44, 2004.

[13] K. Iwasaki, Y. Dobashi, and T. Nishita. A fast ren-
dering method for refractive and reflective caustics
due to water surfaces. Computer Graphics Forum,
22(3):601–609, 2003.

[14] T Nishita and E Nakamae. Method of displaying op-
tical effects within water using accumulation-buffer.
In Proceedings of SIGGRAPH’94, Computer Graph-
ics Proceedings, Annual Conference Series, pages
373–380. ACM, 1994.

[15] M Segal, D Korobkin, R Widenfelr, J Foran, and
P Haeberli. Fast shadows and lighting effects us-
ing texture mapping. In Proceedings of SIGGRAPH
1992, Computer Graphics Proceedings, Annual Con-
ference Series, pages 249–252. ACM, 1992.

