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ABSTRACT

Graphics editors have recently come into wide use. But for displaying high quality images,
a more powerful tool has been desired. This paper proposes a useful display method for
Chinese calligraphy, traditional Japanese ink painting called sumie, and watercolor painting.
The method comprises techniques to express the outlines of a brush stroke and to vary shades
of color. That is, the outlines of a brush stroke are modeled using piecewise Bézier curves, and
the variation of gray shade inside of the outline are defined by Bézier functions. This method
provides effective characteristics of a brush stroke such as shade variation, the scratchiness
produced by dry brush, and blotchiness caused by the diffusion of ink.
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1 INTRODUCTION

Graphics editors (painting systems) useful in graphic art have recently come into wide use.
Due to the increase in users of such systems, a tool able to render such expressions as oil
painting and airbrush work has been desired, in order to represent better quality images.
This paper proposes a useful method of express the Chinese calligraphy, traditional Japanese
ink painting called sumie, and watercolor painting. This method provides better quality
compared with previous methods which attempt to render such effects as shade variation,
scratchiness (produced by a brush with too little ink remaining), blotchiness caused by dif-
fusion of ink, or a stroke with texture; It is made up of the techniques of scan converting an
outline of a brush and shade variation; the outline of a brush stroke is described by Bézier
curves, the shade variation in the inside of the outline is expressed as Bézier functions, and
these regions are scan converted with high accuracy.

In the following sections, the effects of brush strokes, previous work, and the scan conversion
method of brush strokes are described. Finally examples of results which prove the usefulness
of the proposed method are presented.

2 EFFECTS OF BRUSH STROKES AND PREVIOUS WORK

2.1 Effects of Brush Strokes

Two dimensional painting systems are divided into two types; the painting type giving color
information to each pixel, and the drawing type specifying a primitive such as a circle, or a
straight line. The representation method discussed here belongs to the latter; both outlines
of a stroke and shade variation are described by functions.



Figure 1: Expression of a brush stroke by quadrilateral approximation.

Sumie can produce not only the shape of curves but also perspective images by using subtle
shade variation of ink. The ink density on the brush is uneven. Therefore, the ink density cn
each part of the brush affects the distribution of shade in a stroke, and the ink quantity varies
as the brush moves through the stroke. This produces the effect of fuzzy shade gradation.

When a brush with watery ink moves on absorbent paper, particles of ink diffuse into the
paper. This phenomenon is called blotchiness. Meanwhile, when the ink quantity is too little,
a part of a brush stroke does not come out clearly. This phenomenon is called scratchiness (dry
brush effect). With traditional Chinese calligraphy, depending on the particular character,
the brush must be swept up abruptly at the end of the stroke. Such a movement of a brush
also gives rise to scratchiness. Change of brush pressure varies the shade and width of a
stroke. When drawing sumie, the variation of shade has to be taken into comnsideration.
When rendering “Bokusai-painting” (traditional Chinese color painting), variation of color
must be considered. Furthermore, outlines of almost all fonts resembling a writing brush style
consist of curves. Therefore, a precise scan-conversion method of the closed areas bounded
by curves is required.

2.2 Previous Methods for Brush Strokes

Some methods for displaying brush strokes have been developed. Strassmann [11] first at-
tempted to simulate sumie. His method uses spline curves to express the trajectory of a
stroke, and the area covered by the stroke is approximated by a set of quadrilaterals (see
Figure 1). Chua [1] developed the method expressing the outline of a stroke by Bézier curves.
This method uses a PostScript equipped printer. As stripes bounded by Bézier curves of a
small width with different iniensities are arranged to represent shade variation, shade varies
discretely. Therefore, the quality of the image produced is not high enough. The effect of
blotchiness is not considered in his system. Pham [9} used a B-spline curve to express the
trajectory of a brush stroke. The area covered by the stroke is approximated by a set of small
quadrilaterals to be filled with ink. Recently a method to simulate the blotchiness cansed by
the diffusion of ink using microscopic property of paper was proposed by Guo [4], but the
area is also approximated by a set of quadrilaterals. As most methods use a set of quadri-
laterals as an approximation of the area bounded by curves, the image quality is still open
to improvement. The proposed method describing outlines of strokes and shade variation by
Bézier functions yields precise and smooth outlines and variation of shade.

The method proposes a scan-conversion method for curved outlines without any polygonal
approximation. As direct scan-conversion algorithms of curves, both of the scan-conversion
of quadratic splines [8] and the quadratic rational Bézier curve [10] have been developed. In
these methods intersections of a scanline and curves are calculated by solving a quadratic
equation; intersection points can be obtained analytically. As these methods use quadratic
curves, image quality is unsatisfactory. On the other hand, it is difficult to obtain intersections



Figure 2: Expression of a brush stroke by Bézie curves.

analytically for curves with a degree of more than two., The Newton method is often used
as one of the numerical analysis methods; but it requires a suitable initial guess, and is not
robust. It is difficult to guarantee finding all solutions. As far as the authors know, no
direct scan-conversion algorithm of curves, which have a degree of more than two, has been
published. The advantages of the proposed method are that the intersections of a scanline
and a curve can be obtained robustly by employing the convex hull property of Bézier curves,
and the high degree Bézier curves are scan converted by iterations using linear equations.

The system which controls the movement of an actual writing brush by a computer like a
plotter was proposed [12], though this subject is out of our discussion.

3 BASIC CONCEPT AND OUTLINE OF PROCEDURE

A couple of cubic Bézier curves make up the outline of a stroke. Let’s consider Bézier planar
patches bounded by curves (see Figure 2). The degree of the Bézier patch is 3 x 1, and
each patch is expressed by two parameters, u and v; u is the parameter along it, and v the
parameter across it. A shade value is defined as Bézier functions of « and v. Variation of
shade with respect to v is defined as a cubic Bézier function because the distribution of ink
across a stroke is uneven.

The outline of a brush stroke is given as Bézier curves of degree three or degree one (i.e., a
straight line). A point in the the Bézier patch is denoted by P(x,v), and the shade value at
that point is described by function of (1, v).

As a brush stroke is represented by a planar Bézier patch (3 x I, or 1 x 1 degree Bézier
patch), point P in the patch is expressed by

n 1
P(u,v) =) Y P;B(u)B}v) (1)

i=0 j=0

where Pi;(2ij,%;) (i=10,1,2,---,n;n =3 or 1,§ = 1,2) are the coordinates of the control
points, and both curves on » = ( and v = 1 give the boundary curves of a stroke. B is the
Bernstein polynomial, anid is given by BP(u) = (M)u'{(1 — u)*~1.

The outline of the procedure is as follows:



(1) A scanline moves from the top to the bottom, and every intersection of the scanline
and outline curves is calculated.

(2) For every pixel between these intersections, u and v are evaluated.

(3) The shade is computed using % and v, and is displayed.

In Step (2), in the case of 3 x 1 degree patch, an equation of degree 6 should be solved
to calculate parameters u and v from coordinate (x,y) on a screen (when we use Kajiya’s
raytracing method[5]). Now we are discussing a painting system, and it is not practical, due
to computational expense, to solve such a high degree equation for every pixel. Therefore,
we propose an approximation method based on linear equations. That is, the values of u and
v for sampling points on the scanline within the patch are obtained as the intersections of
iso-parametric curves of the patch (iso-parametric curves of v component are lines) and the
scanline.

Data input is performed interactively. Two input methods are available in our system. One
of them uses points on the outline of brush stroke, some points on the outline are taken into a
computer by mouse, and then Bézier curves are constructed using the data. Another method
uses a sequence of points on a center line of a stroke; after inputting these points on the
center line, Bézier curves expressing the center line are constructed, then widths are given
as offset distances from the control points, and the offset curves are constructed by Bézier
curves.

4 SCAN CONVERSION OF BEZIER PATCHES

4.1 Calculation of Intersections of a Scanline and Cuarves

The scan-conversion algorithm proposed here is the improved version of calculation of inter-
sections of Bézier curves and a straight line, which has been developed for the ray tracing
method [6] of Bézier patches to save on computation time.

To obtain intersection points efficiently the following premises are made. 1)The scanline
moves from the top to the bottom, and 2) the curve is monotone decreasing in y component.
That is, the curve intersects with the scanline only once. The preprocessing for setting this
condition is performed in advance; an original Bézier curve is subdivided at every point where
the first derivative is zero.

The algorithm of calculating an intersection point between Bézier curve C of degree n and
scanline L is explained using Figure 3 (n = 3 in this figure). Coordinates (z, y) of an arbitrary
point on C are expressed by using parameter ¢ as follows(e.g., ¥ = D in equation (2)):

) = 3B,
i=0

W) = Y uBr). (2)

=0

Let’s denote y, as y coordinate of the scanline, and then the equation of scanline L is ex-
pressed by y — y, = 0. The intersection between curve C' and straight line L is obtained
by substituting y-component of equation {2) in this equation,

Y o wBrE)~y = 0. (3)

i=0



(a) Bezier Curve. (b) Distance function.

Figure 3: Intersection between scanline and Bézier curve.

As 3 0% BP(t) = u, n
S dBP() = 0. “
i=0

whered; = ¥ — ..

As shown in Figure 3 (b), equation (4) is equivalent to a non-parametric Bézier curve. As-
sumed that the function composed of control point (i/n, d;) is d(t), d is the distance from the
scanline to the Bézier curve. Therefore we call equation (4) a distant function. The solutions
of equation (4) is obtained by an iteration method (Bézier clipping method(6]).

4.2 Scan Conversion Using Coherence between Scanlines

For saving computation time on the iterative method described in the previous sub-section,
the coherence between scanlines is utilized. Assume that scanline L decreases by Ay (here
Ay = 1; scanline width). The value of parameter { of curve C is neatly equal to zero at the
intersection point of the curve C with the first scanline (i.e., the intersection point is near
the starting point Py on C). In most cases the intersection interval [tmin,tmaz] between a
scanline and the convex hull formed by control points d;s of a distance function is narrow
enough (see Figure 4(b)); the solution can be obtained by few iterations. After converging
to solution Zpmin, the curve is subdivided at i,;5; the interval [0,#;n] is clipped away, and
a new interval [£,,in, 1] is used for the next scanline as new control points. Then the control
points for interval [¢m;n, 1] are used for the next scanline as new control points.

By splitting the curve like this, every intersection point between a new interval and the
following(next) scanline (a horizontal chain line shown in the figure) is near the point where
t = 0 on the new curve. Therefore, the solution is obtained by few iterations. If the difference
of t,;n from that of previous scanline is very small, the Bézier curve is not subdivided as
mentioned later. The subdivision of Bézier curves is applied only to y component, rather than

to both z and y components. Subdivision is accomplished by the well-known de Casteljau
method|2).

Let’s denote the minimum and maximum y values of the control points as ymin and Ymaz,
and the values of ¢,,;, and ¢,,.; on the original(i.e., before subdivision) Bézier curve as T},;,
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(a) Bezier Curve. (b) Distance function.

Figure 4: Intersection interval on a scanline.

and T,,.., respectively. Let tol be the tolerance. Then the procedure of scan conversion is as
follows:

1) Set ¥ = Ymazs Thin = 0.

2) Extract the interval [tmin, tmaz] using the control points d; of the distance function, where
d,' = ¥i—-Y (1= 1,2,"',ﬂ).

3) If Tnas — Tinin > tol, extract the distance function of the interval [tpin,tmaez] and go
back to 2). Otherwise go to the next step.

4) Calculate t = (Tinin + Tinaz)/2, and calculate z coordinate from ¥( see equation (2)).

8) I Tyip — Thin > tol, extract the interval [{nin, 1] on ¥ component of the Bézier curve,
and set T7 . = Tpyin. Otherwise go to the next step.

8) fy, > Ymin,set ¥, = ¥, — Ay and return to 2). Otherwise terminate the algorithm.

As the tolerance is defined in parameter space, the value of the tolerance has to be given
depending on the length of the curve; in order to obtain the same degree of accuracy of the
z coordinate of an intersection point, the tolerance may be small for a long curve, and large
for a short curve. Therefore, in this paper the inverse of the length of the longer side of
the bounding box determined by the control points of the curve is used as the tolerance.
Subdivision in step 3) is applied twice, since the left side of #,,;, and the right side of ¢4z
should be clipped away. Meanwhile, in step 5) to clip the left side of ¢, the curve is
subdivided once.

In the proposed method the smaller the area of the convex hull composed of the control points
of the distance function, the fewer the number of iterations. Namely, as the intervals between
y components of the control points approach equidistance, the distance function comes close
to a straight line and thus the number of iteration becomes few. For our examples, the
proposed method requires only an average of 1.3 iterations to obtain one intersection.

4.3 Inverse Mapping

As stated in the previous sub-section, the intersection points of a scanline and boundary
curves can be extracted efficiently by the intersection test using the Bézier clipping method.



Figure 5: Inverse mapping.

In the next step in order to fill ithe Bézier paich, inverse mapping calculating values of « and v
from coordinate (z,y) is required. For this calculation, as mentioned before, it is necessary to
solve equations of degree six. Though the Bézier ¢lipping method .can be used, the following
approximation is applied to improve ithe efficiency.

The intersection points of scanline y = y, and boundary curves of a Bézier patch are denoted
by (z:,¥,) and (z,,y,), and parameters at those points are described by (u;, v1) and (u,,v,),
respectively. After calculation of intersection points (z;,¥,) and (z,, y,) (see Figure 5), (u, v)
of every pixel between the intersections are evaluated in the following manner.

As the degree of v component is one, it is guaranteed that an intersection line of the scanline
and the Bézier patch is within [, %,] in the parameter space.

Sampling points are set by dividing the interval [z1,z,] by N, where N = (2, —z;)/M; M is
the sampling span { usually it’s set to 2 or 3 pixel width). After calculation of (u, v) for every
sampling point, the values of the parameters at every pixel between the sampling points are
linearly interpolated.

At the k-th sampling point (k£ = 1,2,---,N — 1), let (u;,vz) denote parameters and z;
express the x-coordinates at the intersections between the scanline and the outline. Then
these values are obtained as follows:

1) If u, —u; > ¢ (¢:tolerance) ,

ug = u+ (u, — w)k/N,

vp = (y(ux,0} — 9,)/(y(ue,0) — y(uz, 1)),
zr = a(up,m),

where functions z(u, v} and y(u, v) are z and ¥ components of the equation, respectively
(1). The following equations give the values of (u, v) satisfying the condition 2 € z <
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Figure 6: Shade variation by Bézie function.
Ti41-
s = (z— 35)/(3k+1 — 23),
= wp+ (vp41 — )3, (5)
v = v+ (41— ta)s.
2) If u, —ui < ¢,
s = (z-z)/(2, — 1),
v = (w+u)f? (6)
v = uy+ (v —v)s

5 CALCULATION OF SHADE VARIATIONS

Shade of a brush stroke is given as Bézier functions of u and v (u is the parameter along the
stroke and v is the one across the siroke). Shade function g expressed by % and v is shown
in Figure 6. This function shows the blending ratio between ink color and paper color. The
shade function is defined as

3 1
9(u,v) =) _g;B}(v) }_ 4B} (u) M
j=0 i=0
where Bézier functions of 4 and v are linear and degree 3, respectively, and both g; and g¢; are
the control points of Bézier functions for shade variation. It is assumed that the ink decreases
linearly along a stroke (with u component), and the distribution of ink across the stroke is
not uniform. For example, in case that ink is dense in the center part and thin in the margin,
the degree of function should be more than two. Therefore, we use a cubic Bézier function

for v component.

Color(or intensity) C at point (z, y) is obtained from ink color C; and paper color C,, using
shade function g; it is calculated by

Clz,y) = 9(u,v)C; + (1 — 9(%,v))Cp (2, 9)- (8)
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Figure 7: Shade function with dry brush effect.

By treating the color of the colored paper as the color of new paper, it is possible to overlap
another stroke.

5.1 Effect of Dry Brush

When the moisture on a brush is too little, a part of a brush stroke does not come out
clearly. That is, scratchiness arises; dry brush effect. Once this arises, it remains until the
ink is replenished. To represent the quantity of each bristle, » component is discretized
(e.g., divided into 50 elements). An array is used to memorize the ink quantity of each
bristle. Variation of the ink quantity (v component) is given as a cubic Bézier function, and
a small amount of vanation caused by the application of random numbers is superimposed.
Figure 7 shows initial ink quantity at u = 0 (User can specify the control points of the Bézier
function and the the magnitude of the random numbers). Along the movement of a stroke
{in proportion to u), the ink quantity decreases linearly. When the ink quantity of a bristle
drops below a given threshold, its locus fades away.

5.2 Effect of Blotchiness

When a sheet of absorbent paper is used, blotchiness {diffusion or nijimi in Japanese) arises,
and it is noticeable around the boundary of a stroke. The diffusion area is assigned as a
function of v component in our system. That is, blotchiness arises in the regions of 0 € v < dv
and 1 —dv < v <1, where 0.1 or 0.2 are used as dv. In order to vary shade in these regions,
our system uses the Fourier function [3] which is proposed for generating cloud patterns.

The nearer the boundary, the greater the effect of blotchiness. The shade value is weighted
by the following equation F which is shown in Figure 8.

F(u) = kY cilsin(fiu+p;) +7) - 3 cilsin(givo + ) + ), 9

1=0 i=0

where constant k 1s used to keep the range of ¥ smaller than 1, f; and g; are frequencies, c;
is the magnitude for the i-th frequency, and p; and g; are phases. Among those constants,
there are following relations:
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Figure 8: Shade variation by Fourier series.

i1 = 2F;, givr = 2gi, ciza = 1/V2¢;,pi = (x/2)sin(g; + vo/2) (g is given in the similar
manner). m ranges from 3 to 6, and T is set to 0.5. vo is constant.

For example, when v < dv, if v < Fdv, the shade function g is set to 0. In the case of
l—dv<wv,ifv> Fdv/(l1 —dv), g is set to 0.

Figure 9 shows examples of simple brush strokes; {a) represents shade variation, (b) expresses
the effect of dry brush, (¢) shows blotchiness, and (d) shows overlapping strokes with different
colors.

5.3 Texture Mapping

As (u,v) are calculated for every point in a patch, general texture mapping methods for 3D
objects are applicable without any change.

6 EXAMPLES

Figure 10 shows some examples of the proposed method. Figure (a) shows an example of
Chinese calligraphy, a character which means heart. Figure (b) demonstrate dry brush effect.
Figure (c) represents the effect of blotchiness.

Examples of sumie are shown in Figure 11; leaves and branches of a sasanqua camellia
branch with a flower is shown in Figure (a), a Japanese nightingale in (b), branches of a
tinged Japanese maple tree in (c), and tulips in (d). The number of Bézier curves in these
examples are, in order, 232, 212, 633, and 226, respectively. The stamp shown in the bottom
left in Figure {(a) was the scanned image, and the sumie was overlapped. Blotchiness appears
in a flower in Figure (a), a part of the leaves in Figure (c), and the flowers of Figure (d).
The effect of dry brush is depicted in the leaves in Figure (d). The texture mapped sumie is
shown in Figure 12; curved surfaces are displayed by the raytracing method [6].

Antialiasing is performed by the multi-scanning method without polygonalization [7].

7 CONCLUSION

We have proposed a powerful display method for Chinese calligraphy, Japanese ink painting,
and watercolor painting. The method is composed by the techniques of scan conversion for
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Figure %: Examples of simple strokes.
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Figure 10: Examples of Chinese calligraphy.



(c) (d)

Figure 11: Examples of Japanese ink painting.

Figure 12 An example of texture mapped sumie.



an outline of a brush and varying shade; the outline of a brush stroke is described by Bézier
curves, and shade variation inside the outline is defined by the Bézier function.

The advantages of the proposed method are as follows:

(1) Scan conversion is performed precisely because the algorithm is without any polygo-
ral approximation of boundary curves. Intersections of scanlines and outlines can be
obtained robustly and precisely using the convex hull property of Bézier curves; the
proposed method requires only 1.3 times iteration on average to obtain one intersection
of a scanline and the Bézier curve. ,

(2) Subtle shade variations such as fuzzy shade gradation, dry brush, and blotchiness can
be displayed.

(3) High quality images can be displayed by performing antialiasing.

Acknowledgment The authors would like to acknowledge Y. Taniguchi and M. Nomura
for their help in data creation.

REFERENCES

(1] Chua, Y.S., “Bézier Brushstrokes,” CAD, Vol.22, No.9 (1990), pp.550-555.

[2] Farrin, G., “Curves and Surfaces for Computer Aided Geometric Design,”
Academic Press Inc., (1988), p.25-31.

[3] Gardner, G.W.,“Visual Simulation of Clouds,” Computer Graphics, Vol.19,
No.4,(1985), pp.229-303,

(4] Guo, Q., Kunii, T., “Modeling the Diffuse Painting of ‘Sumie’,” Modeling
in Computer Graphics (Proc. of the IFIP WG5.10), Springer-Verlag(1991),
pp-329-338.

[5] Kajiya, J., “Ray Tracing Parametric Patches,” Computer Graphics, Vol.16,
No.3,(1982), pp.245-254.

(6] Nishita, T., Sederberg, T.W., Kakimoto, M., “Ray Tracing Rational Trimmed
Surface Patches,” Computer Graphics, Vol.24, No.4,(1990), pp.337-345.

(7] Nishita, T., Nakamae, E., “Half-Tone Representation of 3D Objects with
Smooth Edge by Using a Multi-Scanning Method,”J.Information Process-
ing(in Japanese), Vol.25, No.5,(1984), pp.703-711.

(8] Pavlidis, T., “Scan Conversion of Regions Bounded by Parabolic Splines,”
1EEE CG & A, 1985,pp.47-53.

[9] Pahm, B.,“Expressive Brush Strokes,” Graphical Models and Image Process-
ing, Vol.53, No.1,(1991), pp.1-6.

[10] Saitoh, T., Hosaka, M., “High Quality Outline Fonts by the Extended Ratio-
nal Quadratic Bézier Curve,” J.Information Processing(in Japanese), Vol.31,
No.4,pp.562-570.

[11] Strassmann, S., “Hairy Brushes,” Computer Graphics, Vol.20, No.4,(1986),
PP-225-232.

[12] Yun-Jie, P., Hui-Xiang, Z., “Drawing Chinese Traditional Painting by
Computer,” Modeling in Computer Graphics (Proc. of the IFIP WG5.10),
Springer-Verlag(1991), pp.321-328.



Tomoyuki Nishita is a professor in the department of Elec-
tronic and Electrical Engineering at Fukuyama University, Japan.
He was on the research staff at Mazda from 1973 to 1979 and
worked on design and development of computer-controlled ve-
hicle system. He joined Fukuyama University in 1979, He was
an associate researcher in the Engineering Computer Graphics
Laboratory at Brigham Young University from 1988 to the end
of March, 1989. His research interests involve computer graphics
including lighting model, hidden-surface removal, and antialias-
ing.

Mishita received his BE, ME and Ph. IV in Engineering in 1971,
1973, and 1985, respectively, from Hiroshima University. He is
a member of ACM, IP5 of Japan and [EE of Japan.

Addresa: Faculty of Engineering, Fukuvama University, Sanzo,
Higashimura-cho, Fukuvama, 729-02 Japan.

E-mail: nis@eml hiroshima-u.ac.jp

Shinichi Takita is a professor in the Department of Educa-
tion at Kagawa University, Japan. His research interests include
computer graphics and CAL

Takita received his BE and ME degrees in electrical engineering
form Hiroshima University in 1964 and 1966, respectively. He
is & member of the |EE of Japan, [PS of Japan and the Japan
Society of Industrial and Technical Education.

Addresa: Faculty of Education, Kagawa University,

1-1, Saiwai-cha, Takamatsu, 760 lapan.

E-mail: takitafied kagawa-u.ac.)p

Eihachiro Nakamae is a professor at Hiroshima Prefectural
University. Previously he worked at Hiroshima University rom
1956 to 1992, where he was appointed as research associate in
1956 and a professor in 1968, He joined Hiroshima Prefectural
University in 1992, He was an associate researcher at Clarkson
College of Technology, Potsdam, N. Y., from 1973 to 1974. His
research interests include computer graphics and electric machin-
BIY.

Nakamae received the BE, ME, and DE degrees in 1954, 1956,
and 1967 from Waseda University. He iz a member of [EEE, IEE
of Japan, IP5 of Japan and IEICE of Japan.

Addresa: Faculty of Information Science, Hiroshima Prefectural
University,

Nanatubka-cho, Shoubara City, Hireshima Prefecture, 727 Japan.
E-mail: naka@eml hiroshima-u.ac.jp



