
   

  

   

Modeling and Rendering of Various Natural Phenomena 

Consisting of Particles 
 Tomoyuki Nishita Yoshinori Dobashi 
 University of Tokyo Hokkaido University 
 7-3-1 Hongo, Bunkyo-ku, Kita 31, Nishi 8, Kita-ku, 
 Tokyo, 113-0033, Japan Sapporo, 060-8628, Japan 
   nis@is.s.u-tokyo.ac.jp doba@nis-ei.eng.hokudai.ac.jp 

 
Abstract 

The simulation of various natural phenomena is one 
of the important research fields in computer graphics. 
In particular, aspects such as sky, clouds, water, fire, 
trees, smoke, terrains, desert scenes, snow and fog are 
indispensable for creating realistic images of natural 
scenes, flight simulators and so on. Therefore, a lot of 
researchers have been trying to develop methods for 
simulating and rendering these. In this paper, we focus 
on sky, clouds, smoke, desert scenes and atmospheric 
effects, such as shafts of light. These phenomena have 
the common feature that they are consist of the effects 
of small particles. To create realistic images, physical 
based simulation and rendering are required. In 
particular, the color greatly depends on the properties 
of light scattering due to particles. In general, however, 
the simulation and rendering of these images is 
assumed to be very time-consuming. This paper 
describes efficient methods for creating realistic images 
of such natural phenomena. 
  
1. Introduction 

In the field of computer graphics, various methods 
have been developed in order to display photo-realistic 
images by taking into account natural phenomena. 
Although there are many kinds of natural phenomena, 
many of them seem to have the common feature that 
they consist of the effects of small particles. Table 1 
summarizes such natural phenomena. In these natural 
phenomena, light scattering/absorption due to particles 
is important. As shown in Table 1, depending on the 
size, Rayleigh and Mie scattering theories are applied to 
small and large particles respectively. The topics of this 
paper concern sky, clouds, smoke, desert scenes and 
atmospheric effects. These are very important elements 
in creating realistic images of natural scenes. The sky 
and clouds play an important role when making images 
for flight simulators or outdoor scenes. Methods of 
displaying smoke are used in various fields, such as 
visual simulation, entertainment, etc. We often find 

va
on
the
au
pa
a r
the

ph
ph

of
an
Th
clo
pa
the
(m
ch

Ma
Sky
(sky
Clo

Smo

Wa
(col
sha
cau
Fog
Atm
(sha
volu
Sno
Dun
Satu
rious beautiful ripple patterns that are made by wind 

Table 1 Natural phenomena related to particles 
terial Particles Scattering 
 
 color, skylight) 

Air molecules 
Aerosols 

R 
M 

uds Water vapor, 
icicle 

M 

ke/gas Water vapor, 
dust 

M 

ter/ liquid 
or of water, 
ft of light, 
stic) 

Water molecules R 

 / haze Water particles M 
osphere 
ft of light, 
me light) 

Water vapor M 

w Snow flakes M 
es Sand particles M 
rn’s ring icicle M 

R: Reyleigh scattering   M: Mie scattering 
 a sandy beach. Particles in the atmosphere produce 
 shafts of light caused by the headlights of 

tomobiles, street lamps, studio spotlights, and light 
ssing through stained glass windows, for example. As 
esult, there exists a great deal of research focusing on 
se topics. 
There are two important issues for synthesizing 
oto-realistic images including the above natural 
enomena. These are modeling and rendering. 
Generally, the modeling process includes the creation 
 shapes of objects, their dynamics (motion/movement) 
d their physical properties such as surface reflectance. 
is is however not an easy task for objects such as 
uds, smoke and sand dunes. They consist of small 

rticles and therefore it is difficult to define definite 
ir shapes. The simulation of their dynamics 
ovement) is also a difficult task, since their shape 
anges continuously with time. Therefore, a lot of 



   

  

modeling methods have been developed to address this 
problem. Using these methods, however, obtaining 
realistic-looking shapes and motion is very time 
consuming.  

Rendering is the process of generating images by 
calculating colors for every pixel. The ray-tracing 
algorithm is often employed for generating images 
including the sky, clouds, smoke, desert scenes, and the 
atmospheric effects. Although the ray-tracing algorithm 
can create extremely realistic images, the computation 
time is very long. For example, the rendering of clouds 
and smoke requires the integration of the intensity of 
light scattered by small particles along the viewing ray. 
On the other hand, the processing speed of graphics 
hardware has become faster and faster recently. In 
addition, high performance graphics hardware is 
available even on low-end PCs. These facts have 
encouraged researchers to develop hardware-accelerated 
methods for rendering realistic images [1][2][3][4]. 

This paper introduces efficient methods for modeling 
and rendering of sky color, clouds, smoke, desert and 
other atmospheric effects. We use an image-based 
approach for modeling clouds viewed from space, the 
simulation of fluid dynamics for smoke, cellular 
automata for cloud motion and sand dunes. Efficient 
rendering is achieved by making use of graphics 
hardware. In the following sections the details of the 
methods are described with several examples. 
  
2. The Sky 

The color of the sky depends on the altitude of the 
sun, the atmospheric conditions and the viewing 
direction, changes that results in the variation of the 
appearance of buildings that reflect the sky color. The 
atmosphere consists of both air molecules and aerosols. 
The scattering due to the former obeys the Rayleigh 
scattering theory and the latter obeys the Mie scattering 
theory. As shown in Fig. 1, for Rayleigh scattering, the 
intensity of the sky, Lλ (v), in the viewing direction, v, is 
calculated by the following equation [5]. 

∫ −−=
aHs dsststs

kFI
L

04
)),(),'(exp()(

)()(
)( λλρ

λ
αλ

λ v , (1) 

where λ is the wave length, Is the intensity of the 
sunlight, F the phase function of air molecules, Ha the 
distance between the viewpoint Pv and the top of the 
atmosphere Pa, ρ the density of air molecules, s’ the 
distance between P and Pb, and s the distance between P 
and Pv (see Fig. 1). 
Since the density ratio of air molecules varies 
exponentially with the height from the ground, the 
optical length, t(s, λ), is calculated by the following 
equation. 

∫∫ −==
ss

dl
H

lhkdllkst
0 0

404
))(exp(4)(4),(

λ
πρ

λ
πλ , (2) 

where H0 is a constant called the scale height of the 
atmosphere and h(l) is the height from the ground. 
Although both air molecules and aerosols must be taken 
into account in the actual physical phenomenon, only 
the scattering of air molecules is described here. For 
more details, see [5] [6]. To calculate the color of the 
sky from Eqs. (1) and (2), the intensity of the light 
arriving at the viewpoint, which is the sun light scattered 
and attenuated due to particles, must be integrated along 
the viewing ray. This requires the computation of the 
optical length of the path, PbPPv (see Fig. 1). The 
optical length is calculated by using Eq. (2). Since 
obtaining the analytical solution for the integral is 
difficult, the intensity of the sky must be calculated by 
the numerical integration method. 

Since it takes time to calculate the color of the sky by 
using numerical integration every time the sky is 
displayed, the intensity distribution of the sky is 
calculated and stored in a look-up table. Then the sky is 
rendered in real-time as follows. The sky is considered 
to be a hemisphere with a large radius. The hemisphere 
is polygonized and the color of the sky at each vertex is 
obtained by using the look-up table. Then the 
hemisphere is display by using graphics hardware. 

Fig. 2 shows an example of sky color and fog effects 
rendered by our method. In this figure, sky colors are 
calculated taking into account multiple scattering [7]. 
This realizes more realistic images of sky as shown in 

sun light Is( )

Pa

Pb

P

Pv

h
s

s’

Ha

viewpoint

Figure 1: Calculation of sky color.

earth

 
Figure 2: Example of sky color and fog effects. 



   

  

the figure. 
  
3. Clouds 

In this section, two methods for modeling clouds are 
described. The first one is for large-scale clouds such as 
typhoon viewed from space [8]. The second one is for 
motion of clouds viewed from ground [9]. Then, a 
hardware-accelerated method for rendering of clouds is 
explained [9]. 
  
3.1 Image-based Modeling of Clouds 

For generating images of the earth viewed from outer 
space, large scale clouds such as typhoon have to be 
modeled. Our method uses an image-based approach for 
modeling such kinds of clouds. Our method creates 
three-dimensional clouds based on a satellite image [8]. 
As shown in Fig. 3, clouds are represented by a set of 
meatballs [10]. Parameters of metaballs (center 
positions, effective radii, and density values) are 
determined automatically so that a synthesized image of 
clouds modeled by metaballs coincides with the satellite 
image.  

A density value at a point P in the cloud is given by 
the following equation. 

ρ( ) ( , )P q f r Rj j j
j

N
≈

=
∑

1
,   (3) 

where N is the number of metaballs, qj the density at the 
center of a metaball j, f the field function, and Rj the 
radius of the metaball. rj is the distance between point P 
and the center position of a metaball, Cj, that is, 
r P Cj j= − . We use the field function proposed by 
Wyvill et al. [10]. 

Determining parameters of the metaballs is 
equivalent to solving an inverse problem of determining 
the density distribution inside the clouds so that an 
image of synthesized clouds is similar to a satellite 
image. The problem is, however, very complicated and 
hard to solve. Therefore, we assume that the multiple 
scattering can be neglected. Furthermore, for modeling 

clouds, the attenuation of light due to cloud particles is 
approximated as a constant. Despite these assumptions, 
there is no unique solution to the problem. Therefore, 
the parameters of the metaballs are heuristically 
determined. First, each pixel of the satellite image is 
classified into either cloud region or background region. 
To do this, the satellite image is converted to a 
monotone one. Then pixels with intensities higher than a 
specified threshold are identified as clouds. Next, one 
metaball is added at the pixel with the maximum 
intensity in the cloud region. After that, its radius and 
density at the center are optimized and the 
approximated image is calculated using the clouds 
modeled by metaballs. Then a new metaball is added if 
the error between the satellite image and the 
approximated image is greater than a specified threshold. 
These processes are repeated until the error is less than 
the threshold. 

Figure 4 shows an example of cloud created by our 
method. 3D Clouds in three-dimension are generated by 
using a two-dimensional infrared image of a typhoon 
taken from the meteorological satellite, “HIMAWARI”. 
  

 
Figure 4: A typhoon viewed from space. 

  
3.2 Simulation of Cloud Motion 

The exact simulation of cloud motion is complex and 
computationally expensive. Therefore, we have 
developed a simple and efficient method [9]. In our 
method, the cloud motion is simulated using cellular 
automaton. The method can simulate cloud formation 
by simple transition rules. The simulation space is 
divided into voxels. The voxels correspond to cells used 
in the cellular automaton. At each cell, three logical 
variables, vapor/humidity (hum), clouds (cld), and 
phase transition (or activation) factors (act) are assigned. 
The state of each variable is either 0 or 1. hum=1 means 
there is enough vapor to form clouds, act=1 means the 
phase transition from vapor to water (clouds) is ready to 
occur, and cld=1 means there are clouds. Cloud 
evolution is simulated by applying simple transition 
rules at each time step. The transition rules represent 

Pv

Pb

Isunsunlight

Ib

z

viewpoint

viewingray

screen
(satelliteimage)

clouds

baseplane

metaballs

pixelit

P
f

Pa

Pc

Lvb

 
Figure 3: Geometry of clouds. 



   

  

formation, extinction, and advection by winds. For the 
cloud formation, Nagel et al. proposed the following 
three transition rules [11]. One of the disadvantages of 
Nagel’s method is that cloud extinction never occurs 
since cld, after it has become 1, remains 1 forever. 
Therefore, our method simulates the cloud extinction by 
randomly changing cld to zero. Although this realizes 
the cloud extinction, there remains another problem. 
Clouds are never generated after the extinction at the 
cell. To solve this, vapor (hum) and phase transition 
factors (act) are supplied at specified time intervals. 
Similar to extinction, hum and act, are randomly set to 1. 
Moreover, to include the wind effect, all the variables 
are simply shifted toward the wind direction. These 
rules can realize the complex motion of clouds. 
  
3.3 Efficient Rendering of Clouds Using 

Graphics Hardware 
Rendering of clouds is based on the splatting 

algorithm using billboards [9]. The basic idea for 
applying it to cloud display is described here. 

The color of clouds is calculated as follows. First, the 
sum of the scattered light reaching from the sun on the 
viewing ray is calculated. The attenuated light reaching 
from behind the clouds is also calculated. The light 
reaching the viewpoint is the sum of those two. 
Calculation of cloud color using splatting is as follows. 
First, textures for billboards are precalculated. Each 
element of the texture stores the attenuation ratio and 
cumulative density of the light passing through the 
metaball. An image is calculated in two steps using the 
texture-mapped billboards. In the first step, the intensity 
of the light is calculated reaching from the sun at each 

metaball. In the second step, the image viewed from the 
viewpoint is generated. The two steps are as follows.  

Fig. 5 shows the idea of the first step. The basic idea 
is to calculate an image viewed from the sun direction to 
obtain the intensity of light reaching each metaball. First, 
the viewpoint is placed at the sun position and the 
parallel projection is assumed. The frame buffer is 
initialized as 1.0. Then the billboards are placed at the 
center of each metaball with their normals oriented to 
the sun direction as shown in Fig. 5. Next, attenuation 
ratio between the center of each metaball and the sun is 
calculated. To do this for all metaballs, the billboards 
are sorted in ascending order using the distance from the 
sun (the order is B-E-A-D-C in Fig. 5). Then, beginning 
from metaball B, they are projected onto the image 
plane. The values in the frame buffer are multiplied by 
their attenuation ratios that are stored in the billboard 
texture. This can be easily done by using blending 
functions of OpenGL. Then the pixel value 
corresponding to the center of the metaball is read from 
the frame buffer. The value obtained is the attenuation 
ratio between the sun and the metaball. The color of the 
metaball is obtained by multiplying the pixel value by 
the sunlight color. These processes are repeated for all 
metaballs. 

In the second step, the image is generated by using 
the color of the metaball obtained in the first step. First, 
all the objects except clouds are rendered. Next, as 
shown in Fig. 6, the billboards are faced perpendicularly 
to the viewpoint and sorted in descending order based 
on distances from the viewpoint (the order is 
E-B-D-A-C). Then they are projected onto the image 
plane in back-to-front order. The color in the frame 
buffer is blended with that of the billboard texture. The 
blending process is the same as the one used in the 
splatting method (see [12]). That is, the colors in the 
frame buffer are multiplied by the attenuation ratio of 
the billboard texture and then the colors in the texture 
are added. The process is repeated for all metaballs.  

Figure 7 is an image of sea of clouds. This image was 
calculated on a desktop PC (PentiumIII 733MHz) with 

 
Figure 7: Simulation of sea of clouds. 

Figure 5: Algorithm for calculating the
intensity of light reaching the center of
metaballs.

sun

projection

multiply attenuation

read intensity A B

D EC

projection

blending

A B

C D E

Figure 6: Algorithm for generating images.



   

  

NVIDIA GeForce2GTS and the image size is 640x480. 
The computation time was about 8 seconds. The 
proposed method realizes fast generation of realistic 
images. 
  
4. Smoke 

The problem of modelling smoke is it’s complex 
behaviour from it’s interactions with the surrounding air 
and obstacles is a topic of interest. We simulate these 
phenomena by combining the fluid dynamics simulation 
and the particle systems [13]. 

To model the density distribution of the smoke with 
less data, we consider a ‘set’ of smoke particles. We 
can deal with smoke as a combination of smoke clusters. 
This cluster is called a “puff.” We use the metaball to 
define the density distribution of the puff. The motion 
of the smoke is simulated by moving meatballs 
according to the velocity field. This velocity field is 
calculated in advance by the fluid dynamics simulation. 

A fluid is represented as a combination of a temperature 
field and velocity field. The rotational, buoyancy and 
convective components of the smoke motion are often 
modeled by the Navier-Stokes equations [14]. However, 
they don’t consider the random velocity components of the 
turbulence. The random components should be taken into 
account for modeling the complex motion of the smoke. 
Therefore, we use the Reynolds equations, which consider 
the random velocity components of the flow [14]. 

The Reynolds equations fully describe the forces acting 
within the smoke flow, and consider the effects of random 
velocity components. The Reynolds equations are: 

,1)'''''(

)()(

,1)'''''(

)()(

,1)'''''(

)()(

2

2

2

2

2

2

22

2

2

2

2

2

2

22

2

2

2

2

2

2

22

bvt

t

t

F
z
p

y
vw

x
uw

z
w

z
w

y
w

x
w

z
wv

y
wu

z
w

t
w

y
p

z
wv

x
uv

y
v

z
v

y
v

x
v

z
vw

x
vu

y
v

t
v

x
p

z
wu

y
vu

x
u

z
u

y
u

x
u

z
uw

y
uv

x
u

t
u

+
∂
∂−

∂
∂+

∂
∂+

∂
∂−

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂−=

∂
∂

∂
∂−

∂
∂+

∂
∂+

∂
∂−

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂−=

∂
∂

∂
∂−

∂
∂+

∂
∂+

∂
∂−

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂−=

∂
∂

ρ
ν

ν

ρ
ν

ν

ρ
ν

ν

 (4) 
where ρ is the density, p the pressure, ν the coefficient 
of the viscosity, and νt the coefficient of eddy viscosity. 
In the right sides of Eq. 4, the third terms are the terms 
incorporating the random velocity components. In Eq. 
4, there is a buoyancy term Fbv only used by the third 
equation. To calculate it, we have to consider the 
temperature field. Temperature T is defined as the sum 
of the average component T and the random 
component T’. To calculate the temperature field, we 
solve the equations of heat flow, which have some 

a

∂
∂

w
is

w
sh
so
v
a
v
th
v
fi
re

is
c
c
b

5

 
Figure 8: Voxelization of the simulation space. 
nalogy with the Reynolds equations: 

 
Figure 9: Smoke from a chimney. 
),'''(

)()(

2

2

2

2

2

2

2

2

2

2

2

2

z
T

y
T

x
T

z
T

y
T

x
T

z
Tw

y
Tv

x
Tu

t
T

t ∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂
∂−=

α

α  (5) 

here α are the coefficient of the heat diffusivity, and αt 
 the coefficient of eddy and heat diffusivity.  
To calculate above equations, we subdivide the 

hole space that contains the smoke flow into voxels as 
own in Fig. 8. Within each voxel (i, j, k), there are 
me physical variables of the smoke, that is, the 

elocity vector (ui,j,k, vi,j,k, wi,j,k), the temperature Ti,j,k, 
nd the pressure pi,j,k. At the center of each face of the 
oxel, we define a velocity component perpendicular to 
e face, and at the center of the voxel, we define 

ariables of temperature and pressure. The velocity 
eld is calculated numerically by using this 
presentation. 
Once the velocity field is obtained, the motion of smoke 

 simulated by moving meatballs. Basic idea of 
alculating colors of smoke is almost the same as that of 
louds. Therefore, the method described in section 3.3 can 
e used for creating images of the smoke [13] [9]. 
Figure 9 shows an image of smoke. 

    
. Desert Scenes 
In this section, methods for synthesizing realistic 



   

  

images of desert scenes are described. First, our 
modeling method for images of sand dunes is briefly 
introduced. Then an efficient rendering method using 
the LOD principle is explained [15]. 
5.1 Modeling of Sand Dunes 

A desert terrain includes sand dunes and wind- 
induced ripple patterns formed on the sand surface. The 
formation dynamics of wind-ripples and dunes have 
been investigated for a long time. We use Nishimori's 
model for modeling wind-ripples and dunes [16]. In this 
model, the wind-ripples and dunes are represented as 
height fields. The wind ripples are formed by 
calculating the saltation and creep of individual sand 
grains. The sand dunes are formed by considering the 
inclination in the movement of sand grains. The 
wind-ripples are formed when the wind force is within a 
critical range. When we see desert scenes, we often find 
wind-ripples formed on the dune surfaces. Since the 
scales of the wind-ripples and the dunes are completely 
different, they are simulated separately. Then the 
wind-ripples are mapped on the dunes as bump textures. 

We use the formation dynamics of dunes and 
wind-ripples. The dynamics of sand grains consist of 
two elementary processes: saltation and surface creep. 
The saltation means the jump of sand grains caused by 
the wind. When a strong wind causes a sand grain 
rolling on the sand surface to collide with an obstacle, 
the grain is projected into the air, accelerated by the 
wind and then collides into other sand grains on the lee 
side. This jumping process is called saltation. Sand 
grains may move along the sand surface without 
jumping up. This movement is called creep. These 
processes are calculated using the cellular automata 
method. To do this, two-dimensional array is prepared. 
Each element of the array stores the height of the sand 
dunes. Then, a height field is generated randomly and 
stored in the array. Applying simple transition rules for 
each element of the array gradually generates the sand 
dunes/ripple patterns. For more detail, see [15]. 
  
5.2 Rendering of Desert Scenes 

As shown in Fig. 10, a mesh (set of quadrilaterals) is 

generated by using the height field stored in the array 
described in the previous section. The desert scenes are 
rendered by using these quadrilaterals. The outline of 
the rendering process is as follows. 
1. Calculate wind-ripple’s normal vectors. 
2. For each quadrilateral F of the height field mesh of 

the dune: 
(a) Backface culling and the view frustum culling 

is performed. 
(b) Calculate LOD by taking the distance from the 

viewpoint to F. 
(c) Calculate the wind-ripples texture. The texture 

resolution is determined by LOD and is 
mapped onto F. 

To represent the wind-ripple patters on the dune 
surface, we generate the textures using the bump 
mapping technique [17] by using the normal vectors that 
are calculated from the wind-ripples height field. This 
method allows us to render a realistic image without 
increasing to a large computation time, since each 
quadrilateral has a different texture. To solve this 
problem, we use the LOD technique. The basic idea of 
the LOD is to use simpler versions of an object as it gets 
farther from the viewer. For the quadrilaterals far from 
the viewpoint, the texture is insignificant because the 
quadrilateral takes only a few pixels on the screen. 
Therefore, we use textures of different resolutions 
according to the Olds. Our method is as follows. First, 
we calculate the normal vectors of wind-ripples. Using 
these vectors, we prepare the normal vectors for 
different resolutions. For example, when the original 
size of wind-ripple’s height field is 256 × 256, we 
pre-calculate the normals of the 256× 256, 128 × 128, 
64 × 64, and 32 × 32 resolutions. 

Finally, we calculate the textures for each 
quadrilateral of the dune using the resolution 
determined by the quadrilateral's LOD. The LOD is 
calculated from the distance from the viewpoint to the 
quadrilateral. For example, as shown in Fig. 10, a large 
texture is mapped onto a quadrilateral near the 
viewpoint, and vice versa. This method resembles 

Figure 10: Bump-mapping using LODs.
 

Figure 11: A desert scene. 



   

  

mipmapping [18], but each texture is different. 
Therefore we cannot use mipmapping. Using this 
method, the rendering time is greatly reduced and the 
quality of the resulting images is almost the same as that 
of images without LODs. 

Figure 11 shows an example of a desert scene. This 
image is calculated using a Pentium III 750 MHz with a 
NVIDIA GeForce256 video card and the image size is 
720 × 480. The rendering time is 3.5 sec.  
  
6. Atmospheric Effects 

One of the important elements in creating realistic 
images is the effect of atmospheric scattering 
[19][20][21]. Examples of such effects include light 
beams due to spotlights and shafts of light from the 
sun’s rays. This section introduces a method for 
displaying shafts of light at interactive rates by making 
use of the graphics hardware [22]. 
  
6.1 Shading Model for Atmospheric Effects 

Fig. 12 shows the concept of the calculation for light 
scattering. In Fig. 12, a point light source is assumed. In 
general, the intensity of light reaching the viewpoint is 
expressed by the following equation. 

∫+=
T

pobjeye dtttItHFTII
0

)()()()()( βαβ , (6) 

where Ieye is the intensity reaching the viewpoint, Iobj is 
the intensity of an object, β(t) the attenuation ratio due 
to atmospheric particles between the viewpoint and 
point P on the viewing ray, t the distance between the 
viewpoint and point P, T the distance between the 
viewpoint and the object, and Ip(t) the intensity of light 
from the light source reaching point P. H(t) is a 
visibility function that returns the value 1 if the light 
source is visible from point P, or 0 otherwise. F(α) is a 
phase function of the atmospheric particles and α is the 
phase angle (see Fig. 12). Under the assumption that the 
density of the particles is uniform, the attenuation term 
β(t) and Ip(t) is calculated analytically.  

In the above equation, the second term indicates the 
total intensity of scattered light due to atmospheric 
particles and is directly related to the shafts of light. 
Most of the graphics hardware can calculate the first 
term by using a function for simulating fog effects. The 
next section explains our method for calculating the 
second term by making use of graphics hardware. 
  
6.2 Hardware-accelerated Rendering of Shafts 
of Light 

The intensity of light scattered from particles has to 
be integrated along the viewing ray to display the shafts 
of light. Fig. 13 shows the basic idea of our method. 
Virtual planes are placed in front of the viewpoint in 
order to integrate the scattered light. Each virtual plane 
is parallel to the screen and represented by a lattice 
mesh (see Fig. 13). The idea for calculating the total 
light reaching the viewpoint is as follows. First, the 
intensity of the light scattered at each lattice point is 
calculated and then stored. The total intensity is the sum 
of the intensities of all the virtual planes. It is computed 
by rendering the virtual planes with an additive blending 
function. The luminous intensity distribution of the light 
source can be taken into account by mapping a light 
map texture [23] onto the virtual planes with a 
multiplicative mapping function (see Fig. 13). 

Shadows cast on particles in the atmosphere are very 
important; when there are objects in an illuminated 
volume, non-illuminated parts arise within it. To display 
the shadow in the atmosphere, non-illuminated parts of 
the virtual planes must be detected. To achieve this, we 
have implemented the idea of the shadow map [23] by 
creating shadow textures for each virtual plane. That is, 
before rendering each virtual plane, an image of the 
shadow cast on it is created. The image is then used to 
mask the non-illuminated parts of the virtual plane by 
mapping it as a texture with a multiplicative blending 
function. 

Pα

t

T

Iobj

Ieye

I
p
(t)

r

light source

viewpoint

object  
  
Figure 12: Shading model for atmospheric scattering. 

 



   

  

Figs. 14 and 15 are examples of rendering shafts of 
light. Fig. 14 shows shafts of light caused by sunlight 
passing through stained glass windows. Fig. 15 shows 
shafts of light caused by spotlights in a opera house. 
The computation was done on a desktop PC (PentiumIII 
733MHz) with NIVIDIA GeForce256. The sizes of 
images are 640x480. Computation times for Fig. 14 and 
15 are 0.7 and 2.1 seconds, respectively. 
  

 
Figure 14: Shafts of light caused by sunlight through 
stained glass windows. 
  

 
Figure15: Shafts of light caused by spotlights. 

  

7. Conclusion 
This paper has discussed efficient algorithms for 

synthesizing realistic images of various natural 
phenomena consisting of particles. In this paper, 
methods for modeling clouds, smoke, and sand dunes 
have been introduced. Realistic shapes and motion can 
be generated by using these methods. We have also 
described methods for rendering sky, clouds, smoke, 
sand dunes, and shafts of light. The 
scattering/absorption due to particles have to be taken 
into account to create images of these. The graphics 
hardware was utilized to accelerate the calculation. As 
shown in the examples, the methods discussed here can 
give us photo-realistic images. 
Acknowledgment 
 The authors would like to acknowledge Miss Keiko 
Sotome (Joshibi Univ. of Art and Design) for her help 

in making the geometric data for the church and the 
opera house in Figs. 14 and 15. 
References 

[1] E. Ofek, A. Rappoport, “Interactive Reflections on Curved 
Objects,” Proc. of SIGGRAPH’98, 1998, pp. 333-342. 

[2] W. Heidrich, H. P. Seidel, “Realistic, Hardware-Accelerated 
Shading and Lighting,” Proc. of SIGGRAPH’99, 1999, pp. 
171-178. 

[3] J. Stam, “Stable Fluids,” Proc. of SIGGRAPH'99, 1999, pp. 
121-128. 

[4] B. Cabral, M. Olano, P. Nemec, “Reflection Space Image Based 
Rendering,” Proc. of SIGGRAPH’99, 1999, pp. 165-170. 

[5] K. Kaneda, T. Okamoto, E. Nakamae, T. Nishita, “Photorealistic 
Image Synthesis for Outdoor Scenery under Various Atmospheric 
Conditions,” The Visual Computer, 7(5&6), 1991, pp. 247-258. 

[6] Y. Dobashi, T. Nishita, K. Kaneda, H. Yamashita, “A Fast Display 
Method of Sky Color Using Basis Functions,” The Journal of 
Visualization and Computer Graphics, Vol. 8, No. 2, 1997, pp. 
115-127. 

[7]  T. Nishita, Y. Dobashi, K. Kaneda, H. Yamashita, “Display 
Method of the Sky Color Taking into Account Multiple 
Scattering,” Proc. Pacific Graphics’96, 1996, pp. 117-132. 

[8] Y. Dobashi, T. Nishita, H. Yamashita, T. Okita, “Using Metaballs 
to Modeling and Animate Clouds from Satellite Images,” The 
Visual Computer, Vol. 15, No. 9, 1998, pp. 471-482. 

[9]  Y. Dobashi, K. Kaneda, H. Hamashima, T. Okita, T. Nishita, “A 
Simple, Efficient Method for Realistic Animation of Clouds,” 
Proc. SIGGRAPH2000, 2000, pp.19-28. 

[10] G. Wyvill and A. Trotman, “Ray-Tracing Soft Objects,” Proc. of 
CG International, 1990, pp.439-475. 

[11] K. Nagel, E. Raschke, “Self-Organizing Criticality in Cloud 
Formation?,” Physica A, 182, 1992, pp. 519-531. 

[12] L. Westover, “Footprint Evaluation for Volume Rendering,” 
Computer Graphics, Vol. 24, No. 4, 1990, pp. 367-376. 

[13] S. Yoshida, T. Nishita, “Modeling of Smoke Flow Taking 
Obstacles into Account,” Proc. Pacific Graphics 2000, 2000, pp. 
135-144. 

[14] G.K.Batchelor, “An Introduction to Fluid Dynamics,” Cambridge 
At The University Press, 1967. 

[15] K. Onoue, T. Nishita, “A Method for Modeling and Rendering 
Dunes with Wind-Ripples,”, Proc. Pacific Graphics 2000, 2000, 
pp. 427-428. 

[16] H. Nishimori and N. Ouchi, ”Formation of Ripple Patterns and 
Dunes by Wind-Blown Sand,” Physical Review Letters Vol.71, 
No.1, 1993, pp.197-200. 

[17] J.Blinn, “Simulation of wrinkled surfaces,” Computer Graphics, 
Vol.12, No.3, 1978, pp.286-292. 

[18] L.Williams, “Pyramidial Parametrics,” Computer Graphics, Vol.17, 
No.3, 1983, pp.1-11. 

[19] N. Max, “Atmospheric Illumination and Shadows,” Computer 
Graphics, Vol. 20, No. 4, 1986, pp. 117-124. 

[20] T. Nishita, Y. Miyawaki, E. Nakamae, “A Shading Model for 
Atmospheric Scattering Considering Luminous Intensity 
Distribution of Light Sources,” Computer Graphics, Vol. 21, No. 4, 
1987, pp. 303-310. 

[21] H. E. Rushmeier, K. E. Torrance, “The Zonal Method for 
Calculating Light Intensities in The Presence of a Participating 
Medium,” Computer Graphics, Vol. 21, No. 4, 1987, pp. 293-302. 

[22] Y. Dobashi, T. Yamamoto, T. Nishita, “Interactive Rendering 
Method for Displaying Shafts of Light,” Proc. Pacific 
Graphics2000, 2000, pp. 31-37. 

[23] M. Segal, C. Korobkin, R. V. Widenfelt, J. Foran, P. E. Haeberli, 
“Fast Shadows and Lighting Effects Using Texture Mapping,” 
Computer Graphics, Vol. 26, No. 2, 1992, pp. 249-252. 


	Introduction
	The Sky
	Clouds
	Image-based Modeling of Clouds
	Simulation of Cloud Motion

	Efficient Rendering of Clouds Using Graphics Hardware

	Smoke
	Desert Scenes
	Modeling of Sand Dunes
	Rendering of Desert Scenes

	Atmospheric Effects
	6.1 Shading Model for Atmospheric Effects
	6.2 Hardware-accelerated Rendering of Shafts of Light

	Conclusion
	Acknowledgment
	References

